File size: 2,807 Bytes
7a1a66b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9628

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3478        | 0.0412 | 200  | 1.2310          |
| 1.3495        | 0.0824 | 400  | 1.1826          |
| 1.3753        | 0.1237 | 600  | 1.1557          |
| 1.3454        | 0.1649 | 800  | 1.1297          |
| 1.2731        | 0.2061 | 1000 | 1.1071          |
| 1.3863        | 0.2473 | 1200 | 1.0878          |
| 1.2567        | 0.2885 | 1400 | 1.0777          |
| 1.257         | 0.3298 | 1600 | 1.0630          |
| 1.2129        | 0.3710 | 1800 | 1.0518          |
| 1.1939        | 0.4122 | 2000 | 1.0405          |
| 1.2658        | 0.4534 | 2200 | 1.0313          |
| 1.1718        | 0.4946 | 2400 | 1.0186          |
| 1.1795        | 0.5359 | 2600 | 1.0102          |
| 1.1984        | 0.5771 | 2800 | 1.0008          |
| 1.157         | 0.6183 | 3000 | 0.9930          |
| 1.1542        | 0.6595 | 3200 | 0.9862          |
| 1.1648        | 0.7007 | 3400 | 0.9802          |
| 1.1403        | 0.7420 | 3600 | 0.9750          |
| 1.1268        | 0.7832 | 3800 | 0.9705          |
| 1.2122        | 0.8244 | 4000 | 0.9672          |
| 1.0571        | 0.8656 | 4200 | 0.9649          |
| 1.0903        | 0.9068 | 4400 | 0.9635          |
| 1.178         | 0.9481 | 4600 | 0.9629          |
| 1.1661        | 0.9893 | 4800 | 0.9628          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1