--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer model-index: - name: Whisper-small-Jibbali_lang_ex2 results: [] --- # Whisper-small-Jibbali_lang_ex2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0317 | 1.0 | 225 | 0.0245 | | 0.0188 | 2.0 | 450 | 0.0147 | | 0.0065 | 3.0 | 675 | 0.0143 | | 0.0163 | 4.0 | 900 | 0.0110 | | 0.0038 | 5.0 | 1125 | 0.0083 | | 0.0025 | 6.0 | 1350 | 0.0079 | | 0.0027 | 7.0 | 1575 | 0.0079 | | 0.0003 | 8.0 | 1800 | 0.0083 | | 0.0026 | 9.0 | 2025 | 0.0084 | | 0.0013 | 10.0 | 2250 | 0.0082 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2