--- base_model: meta-llama/Meta-Llama-3.1-70B-Instruct library_name: transformers license: llama3.1 pipeline_tag: text-generation tags: - facebook - meta - pytorch - pruning - llama - llama-3 --- ## Model Information The Llama 3.1 text only 41B model is pruned from Llama 3.1 instruction finetuned text only 70B using [FLAP method](arxiv.org/abs/2312.11983). > TL;DR No under maintenance. Bad performance, no value. Side product of experiment. Hyper parameters used for pruning: ``` metrics: WIFV structure: AL-AM pruning_ratio: 0.5 ``` ## Limitation This `llama3.1-41B-raw` model gives unstable output. A finetune on instruction dataset is recommended. The model is not supported by any library at the moment due to its unconsistent shape between layers after pruning. ## Usage The model is not supported by any library at the moment, following is a workaround. ```python from functools import reduce def get_module_by_name(module, access_string): names = access_string.split(sep='.') return reduce(getattr, names, module) import json from safetensors import safe_open from transformers import LlamaForCausalLM class MyLlamaForCausalLM(LlamaForCausalLM): def __init__(self, config): super().__init__(config) with open(os.path.join( config._name_or_path, "model.safetensors.index.json")) as f: weight_map = json.load(f) weight_map = weight_map["weight_map"] for name, path in weight_map.items(): module_name = name.replace('.weight', '') if '.bias' in module_name: continue layer = get_module_by_name(self, module_name) with safe_open( os.path.join( config._name_or_path, path), framework="pt") as f: tensor = f.get_tensor(name) if 'mlp.' in name or 'attn.' in name: if tensor.shape != (layer.out_features, layer.in_features): layer = layer.__init__( tensor.shape[1], tensor.shape[0], bias=layer.bias, dtype=layer.weight.dtype, device=layer.weight.device) for name, path in weight_map.items(): if 'attn.' in name: module = get_module_by_name( self, '.'.join(name.split('.')[:-2])) module.num_heads = module.q_proj.out_features // module.head_dim module.num_key_value_heads = module.num_heads module.num_key_value_groups = module.num_heads // module.num_key_value_heads model = MyLlamaForCausalLM.from_pretrained( "npc0/llama3.1-41B-raw", torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained( "FLAP/llm_weights/flap_p0.5_WIFV_ALAM_llama_70b") model = model.eval() messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, ] model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs, max_new_tokens=128) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ```