ppo-LunarLander-v2 / config.json
norsu's picture
Upload PPO LunarLander-v2 trained agent
adc865c verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7da7f1f893f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da7f1f89480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da7f1f89510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da7f1f895a0>", "_build": "<function ActorCriticPolicy._build at 0x7da7f1f89630>", "forward": "<function ActorCriticPolicy.forward at 0x7da7f1f896c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7da7f1f89750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da7f1f897e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7da7f1f89870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da7f1f89900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da7f1f89990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7da7f1f89a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7da7f2122180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708371284050192029, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADoRJz5xOAo8wnOmvWOynDsLPK09YoWZvQAAgD8AAIA/De/IPoNOPz8QBre90T75vjussT6iZ2W+AAAAAAAAAABGBBc+yHWnO5AcTrwyNHm6x3MvPegIY7sAAIA/AACAP+AcPr4oN6m8JgVbu5Lfzbl4WRE+/hupOgAAgD8AAIA/syrDPRRhEj6mblq93rIvvirGzDyKlAI9AAAAAAAAAAAmg0I+ocWhvFjWvjtv6j26EqMOvmwQDbsAAIA/AACAP/N0hL3SEog+3p6ZPSPijb5b27m7XKMzPQAAAAAAAAAABfaNvi5c6bzlc2M7izmROde8TD6aRF+6AACAPwAAgD9dea2+yrFbPoLxID5/7Ju+xzbqvM7NXTwAAAAAAAAAAP7v6r6foAM/8jXQvcwT2750tj6+QgFzPQAAAAAAAAAAWpaPviXGPj82zZm+MUv+vpvGdL6iPTO9AAAAAAAAAAC6x1W+7gPjPfipVT1kTkq+3awivS7QSbwAAAAAAAAAALOw+L0MDbI/xuQbv/v2kr5PW5W9G+k5vgAAAAAAAAAAAOXWPeEsl7pxBIe5exuOtOOM1rpi05s4AACAPwAAgD8zH1C+Yb+ovMKCTTv7HLs5IlcUPp0tg7oAAIA/AACAP+bUKD4hMZK8S+reuqYHLDmqcQS+EucZOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEeShPj4pMKMAWyUS+WMAXSUR0CWnIscyWRjdX2UKGgGR0BzSLrWy1NQaAdL42gIR0CWniKgqVhTdX2UKGgGR0BtuaunuRcNaAdNlQFoCEdAlp5l4gRsdnV9lChoBkdARv03S8an8GgHS6ZoCEdAlp5YSteUp3V9lChoBkdAcnUvpyIYWWgHS+hoCEdAlvk2mk30gHV9lChoBkdAcNFrMkhRqGgHS7BoCEdAlvmIf4h2XHV9lChoBkdAZG6Ik7fYSWgHTegDaAhHQJb5kPGyX2N1fZQoaAZHQEWVjXFtKqZoB0u6aAhHQJb5uzTnaFp1fZQoaAZHQHE/f9YOlO5oB0vKaAhHQJb6p5a/yoZ1fZQoaAZHQHHblT3qRlpoB00MAWgIR0CW+3LwWnCPdX2UKGgGR0Btn6emNzbOaAdLzmgIR0CW/bGtZFG5dX2UKGgGR0BvGI1R+BpYaAdNWQFoCEdAlv7R0EHMU3V9lChoBkdAb4c6NlyzX2gHTQ4BaAhHQJb+yGj9GZx1fZQoaAZHQHHAK9oN/fBoB01MAWgIR0CXAbLRrrPddX2UKGgGR0BwxfYDklu4aAdL9mgIR0CXA5XvphWpdX2UKGgGR0Bw6Ay8BdUsaAdL4WgIR0CXBGRODaoNdX2UKGgGR0BxS+paRp1zaAdNDQFoCEdAlwSa+BYms3V9lChoBkdAcWUbNbC79WgHS9toCEdAlwV+UMXrMXV9lChoBkdAb+7IOH31z2gHTSMBaAhHQJcFzF5v9+B1fZQoaAZHQG4MUPxx1gZoB0vUaAhHQJcIgcPvrnl1fZQoaAZHQHC8+DjBEa5oB0vqaAhHQJcIikrPMSt1fZQoaAZHQFzX0p3HJcRoB03oA2gIR0CXCVyJKraNdX2UKGgGR0Bw+Gtp22XtaAdNHAFoCEdAlwsRtDUmUnV9lChoBkdAcHkMUh3aBmgHS95oCEdAlwrmzByjpXV9lChoBkdAcKZ5bhWHUWgHS9ZoCEdAlwxV/x2B8XV9lChoBkdAcBfhaTwDvGgHS8VoCEdAlwx9TLns9nV9lChoBkdAcj5nDiwSrmgHTVABaAhHQJcQ2izsyBV1fZQoaAZHQG85jfWMCLdoB0vwaAhHQJcQ91B+nZV1fZQoaAZHQHHGf3SKFZhoB0vuaAhHQJcQ7YwqRU51fZQoaAZHQHLRBeokzGhoB01TAWgIR0CXEcXaakRBdX2UKGgGR0BxX8tNBWxRaAdL+GgIR0CXEgq5byH3dX2UKGgGR0BwXPGrCFbnaAdLw2gIR0CXE0TCcf/4dX2UKGgGR0BiDY0IkZ75aAdN6ANoCEdAlxNq8cuJ13V9lChoBkdAclAYyO7xu2gHS/ZoCEdAlxO7MxGlRHV9lChoBkdAcnvRLsa86GgHTQwBaAhHQJcUTr+o99t1fZQoaAZHQHCUnxJ/XoVoB0u4aAhHQJcXJtMwlB11fZQoaAZHQHJGB7iQ1aZoB01FAWgIR0CXF9LR8c+8dX2UKGgGR0BjlIQ8OkLyaAdN6ANoCEdAlxhRq46OpHV9lChoBkdAcVDYNy5qd2gHS7doCEdAlxhNz8xbjnV9lChoBkdAb/+tUXHim2gHS+RoCEdAlxiu2AoXsXV9lChoBkdAcgf2St/4I2gHTXECaAhHQJcaGIYWLxZ1fZQoaAZHQHEaGVJL/S9oB0vGaAhHQJcaEeS0Sh91fZQoaAZHQGVojTrmhdtoB03oA2gIR0CXGgUwBYFJdX2UKGgGR0Bxve5QP7N0aAdLzmgIR0CXGi5XEIgOdX2UKGgGR0Bv5Z9NN8E3aAdNJQFoCEdAlxuGx6fJ3nV9lChoBkdAYdgUN8VpK2gHTegDaAhHQJcb4VTJhfB1fZQoaAZHQGPXgQ6IWP9oB03oA2gIR0CXG8yiEg4fdX2UKGgGR0Bw37GOuJUHaAdL6GgIR0CXG+O5J9RadX2UKGgGR0ByX9L9MsYmaAdNAgFoCEdAlxwtYW+GoXV9lChoBkdAYo7+YMOPNmgHTegDaAhHQJcdTc45tFd1fZQoaAZHQHLZlJtix3VoB0vmaAhHQJceJ0q6OHZ1fZQoaAZHQHDT5OSGJvZoB0voaAhHQJcet+az/qB1fZQoaAZHQG3l6rNnoPloB0vcaAhHQJceyAiFCcB1fZQoaAZHQHDUhjSXt0FoB0utaAhHQJce9OafBep1fZQoaAZHQG+59jG1hLJoB0vNaAhHQJcfvQ0GeMB1fZQoaAZHQG5dxvWH1vloB0vWaAhHQJcgInhKlHl1fZQoaAZHQHESD7yhBZ9oB00TAWgIR0CXIIEytV7ydX2UKGgGR0ByD+SZBsyjaAdLwmgIR0CXIWG7BfrsdX2UKGgGR0B0NxAIIF/yaAdL2GgIR0CXIVz+FUQ1dX2UKGgGR0BxDuVmjCYUaAdL3GgIR0CXIbE7nxJ/dX2UKGgGR0Bxha2TgVGkaAdNIQFoCEdAlyIPepGWlnV9lChoBkdAcWBakRBeHGgHS/toCEdAlyKRTOxB3XV9lChoBkdAcdd5y2hIv2gHS7VoCEdAlyMFXNke63V9lChoBkdAbZDPIn0CimgHS9poCEdAlyMmZiNKiHV9lChoBkdAcYNguyu6mWgHS99oCEdAlyUFklNUO3V9lChoBkdAca0Pf8/D+GgHTQABaAhHQJcl0yckMTh1fZQoaAZHQHEInXNC7btoB0vxaAhHQJcmhEG7jDN1fZQoaAZHQHF3WipNsWRoB0vsaAhHQJcm0O9WZJF1fZQoaAZHQHGSbzf779BoB00BAWgIR0CXKQJrtVrAdX2UKGgGR0BwtFmL9/BnaAdL9WgIR0CXKYWNWEK3dX2UKGgGR0BwwkNFz+3paAdL3mgIR0CXKXduHerNdX2UKGgGR0Bw9HKji4rjaAdNEgFoCEdAlymh3zMA3nV9lChoBkdAbNErrgOz6mgHTV4BaAhHQJcrIDHOryV1fZQoaAZHQHE8pVS4vvloB0vmaAhHQJcsplBhQWN1fZQoaAZHQG6Xu3+dbxFoB00sAWgIR0CXLKM1TBIndX2UKGgGR0Bxe6YQarFPaAdNJgFoCEdAlyyeerdWQ3V9lChoBkdAb8cd0aIeo2gHS7poCEdAlyzKGlANX3V9lChoBkdAb7/EzfrKNmgHS99oCEdAly0/4ubqhXV9lChoBkdAcaM0jTrmhmgHS8hoCEdAlzBX/1g6VHV9lChoBkdAXWN9iMHbAWgHTegDaAhHQJcw53pwCKd1fZQoaAZHQHKbZMg2ZRdoB0vUaAhHQJcxhQ53kgh1fZQoaAZHQHHV8J6Y3NtoB00lAWgIR0CXMYbB42S/dX2UKGgGR0Bu+T7l7tzCaAdL12gIR0CXMZXfqHGkdX2UKGgGR0Bt1DFKkEcLaAdLymgIR0CXMuzoUzsQdX2UKGgGR0Bxc81ivxH5aAdNAgFoCEdAlzNw9ic5KnV9lChoBkdAcCCWhAWznmgHS7JoCEdAlzO9rO7g9HV9lChoBkdAOacYuTRplGgHS9loCEdAlzVSxFAmiXV9lChoBkdAbtPbHIZIhGgHS9ZoCEdAlzVrYXfqHHV9lChoBkdAcfAB0IToMmgHS+xoCEdAlzX5jQRf4XV9lChoBkdAcMAhsZYPoWgHS+BoCEdAlzif3ai9I3V9lChoBkdAYLEGZeAuqWgHTegDaAhHQJc4srBj4Hp1fZQoaAZHQHGMnXRPXTVoB0vtaAhHQJc5dXGOuJV1fZQoaAZHQHNM+NT987ZoB0vZaAhHQJc6lf+jua51fZQoaAZHQHC/I6Kcd5poB0vMaAhHQJc6k2zfJmx1fZQoaAZHQHGDFsk6cRVoB01sAWgIR0CXOuiW3Sa3dX2UKGgGR0ByB5KlHjIaaAdL2mgIR0CXO1GSpzcRdX2UKGgGR0BwkMaLn9vTaAdLvGgIR0CXO5nSOR1YdX2UKGgGR0BjORH5JsfraAdN6ANoCEdAlzyHOGCZnnV9lChoBkdAcD/SAYpDu2gHS/VoCEdAlz17mMfignV9lChoBkdAb5hf3vhIfGgHTQQBaAhHQJc+hvitJWh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}