End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: microsoft/conditional-detr-resnet-50
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: detr_finetuned_cppe5
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# detr_finetuned_cppe5
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 1.7756
|
| 20 |
+
- Map: 0.0254
|
| 21 |
+
- Map 50: 0.0575
|
| 22 |
+
- Map 75: 0.0211
|
| 23 |
+
- Map Small: 0.015
|
| 24 |
+
- Map Medium: 0.0121
|
| 25 |
+
- Map Large: 0.0356
|
| 26 |
+
- Mar 1: 0.0618
|
| 27 |
+
- Mar 10: 0.1553
|
| 28 |
+
- Mar 100: 0.1996
|
| 29 |
+
- Mar Small: 0.0818
|
| 30 |
+
- Mar Medium: 0.1728
|
| 31 |
+
- Mar Large: 0.2326
|
| 32 |
+
- Map Coverall: 0.0809
|
| 33 |
+
- Mar 100 Coverall: 0.4441
|
| 34 |
+
- Map Face Shield: 0.0051
|
| 35 |
+
- Mar 100 Face Shield: 0.1025
|
| 36 |
+
- Map Gloves: 0.0031
|
| 37 |
+
- Mar 100 Gloves: 0.1482
|
| 38 |
+
- Map Goggles: 0.0022
|
| 39 |
+
- Mar 100 Goggles: 0.0585
|
| 40 |
+
- Map Mask: 0.0358
|
| 41 |
+
- Mar 100 Mask: 0.2444
|
| 42 |
+
|
| 43 |
+
## Model description
|
| 44 |
+
|
| 45 |
+
More information needed
|
| 46 |
+
|
| 47 |
+
## Intended uses & limitations
|
| 48 |
+
|
| 49 |
+
More information needed
|
| 50 |
+
|
| 51 |
+
## Training and evaluation data
|
| 52 |
+
|
| 53 |
+
More information needed
|
| 54 |
+
|
| 55 |
+
## Training procedure
|
| 56 |
+
|
| 57 |
+
### Training hyperparameters
|
| 58 |
+
|
| 59 |
+
The following hyperparameters were used during training:
|
| 60 |
+
- learning_rate: 0.0001
|
| 61 |
+
- train_batch_size: 8
|
| 62 |
+
- eval_batch_size: 8
|
| 63 |
+
- seed: 42
|
| 64 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 65 |
+
- lr_scheduler_type: cosine
|
| 66 |
+
- num_epochs: 2
|
| 67 |
+
|
| 68 |
+
### Training results
|
| 69 |
+
|
| 70 |
+
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|
| 71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
|
| 72 |
+
| No log | 1.0 | 107 | 1.9010 | 0.0125 | 0.0389 | 0.0069 | 0.0123 | 0.0077 | 0.0195 | 0.036 | 0.0972 | 0.1374 | 0.0633 | 0.1291 | 0.1645 | 0.0309 | 0.2302 | 0.0065 | 0.1076 | 0.0022 | 0.1348 | 0.0002 | 0.0077 | 0.0225 | 0.2067 |
|
| 73 |
+
| No log | 2.0 | 214 | 1.7756 | 0.0254 | 0.0575 | 0.0211 | 0.015 | 0.0121 | 0.0356 | 0.0618 | 0.1553 | 0.1996 | 0.0818 | 0.1728 | 0.2326 | 0.0809 | 0.4441 | 0.0051 | 0.1025 | 0.0031 | 0.1482 | 0.0022 | 0.0585 | 0.0358 | 0.2444 |
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Framework versions
|
| 77 |
+
|
| 78 |
+
- Transformers 4.55.4
|
| 79 |
+
- Pytorch 2.8.0+cu126
|
| 80 |
+
- Datasets 4.0.0
|
| 81 |
+
- Tokenizers 0.21.4
|