Update README.md
Browse files
README.md
CHANGED
@@ -1,142 +1,216 @@
|
|
1 |
-
---
|
2 |
-
base_model: nomic-ai/nomic-embed-text-v2-moe
|
3 |
-
library_name: sentence-transformers
|
4 |
-
pipeline_tag: sentence-similarity
|
5 |
-
tags:
|
6 |
-
- sentence-transformers
|
7 |
-
- sentence-similarity
|
8 |
-
- feature-extraction
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
### Full Model Architecture
|
34 |
-
|
35 |
-
```
|
36 |
-
SentenceTransformer(
|
37 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel
|
38 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
39 |
-
(2): Normalize()
|
40 |
-
)
|
41 |
-
```
|
42 |
-
|
43 |
-
## Usage
|
44 |
-
|
45 |
-
### Direct Usage (Sentence Transformers)
|
46 |
-
|
47 |
-
First install the Sentence Transformers library:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
pip install -U sentence-transformers
|
51 |
```
|
52 |
|
53 |
-
|
|
|
54 |
```python
|
55 |
from sentence_transformers import SentenceTransformer
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
sentences = [
|
61 |
-
'The weather is lovely today.',
|
62 |
-
"It's so sunny outside!",
|
63 |
-
'He drove to the stadium.',
|
64 |
-
]
|
65 |
-
embeddings = model.encode(sentences)
|
66 |
-
print(embeddings.shape)
|
67 |
-
# [3, 768]
|
68 |
-
|
69 |
-
# Get the similarity scores for the embeddings
|
70 |
-
similarities = model.similarity(embeddings, embeddings)
|
71 |
-
print(similarities.shape)
|
72 |
-
# [3, 3]
|
73 |
```
|
74 |
|
75 |
-
|
76 |
-
### Direct Usage (Transformers)
|
77 |
-
|
78 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
79 |
-
|
80 |
-
</details>
|
81 |
-
-->
|
82 |
-
|
83 |
-
<!--
|
84 |
-
### Downstream Usage (Sentence Transformers)
|
85 |
-
|
86 |
-
You can finetune this model on your own dataset.
|
87 |
|
88 |
-
<details><summary>Click to expand</summary>
|
89 |
|
90 |
-
|
91 |
-
-->
|
92 |
|
93 |
-
<!--
|
94 |
-
### Out-of-Scope Use
|
95 |
|
96 |
-
|
97 |
-
-->
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
### Recommendations
|
107 |
-
|
108 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
109 |
-
-->
|
110 |
|
111 |
## Training Details
|
112 |
|
113 |
-
|
114 |
-
- Python: 3.10.12
|
115 |
-
- Sentence Transformers: 3.3.0
|
116 |
-
- Transformers: 4.44.2
|
117 |
-
- PyTorch: 2.4.1+cu121
|
118 |
-
- Accelerate: 1.0.0
|
119 |
-
- Datasets: 2.19.0
|
120 |
-
- Tokenizers: 0.19.1
|
121 |
-
|
122 |
-
## Citation
|
123 |
-
|
124 |
-
### BibTeX
|
125 |
-
|
126 |
-
<!--
|
127 |
-
## Glossary
|
128 |
|
129 |
-
|
130 |
-
|
|
|
|
|
131 |
|
132 |
-
<!--
|
133 |
-
## Model Card Authors
|
134 |
|
135 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
136 |
-
-->
|
137 |
|
138 |
-
|
139 |
-
## Model Card Contact
|
140 |
|
141 |
-
|
142 |
-
|
|
|
|
1 |
+
---
|
2 |
+
base_model: nomic-ai/nomic-embed-text-v2-moe
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
license: apache-2.0
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
- es
|
13 |
+
- fr
|
14 |
+
- de
|
15 |
+
- it
|
16 |
+
- pt
|
17 |
+
- pl
|
18 |
+
- nl
|
19 |
+
- tr
|
20 |
+
- ja
|
21 |
+
- vi
|
22 |
+
- ru
|
23 |
+
- id
|
24 |
+
- ar
|
25 |
+
- cs
|
26 |
+
- ro
|
27 |
+
- sv
|
28 |
+
- el
|
29 |
+
- uk
|
30 |
+
- zh
|
31 |
+
- hu
|
32 |
+
- da
|
33 |
+
- 'no'
|
34 |
+
- hi
|
35 |
+
- fi
|
36 |
+
- bg
|
37 |
+
- ko
|
38 |
+
- sk
|
39 |
+
- th
|
40 |
+
- he
|
41 |
+
- ca
|
42 |
+
- lt
|
43 |
+
- fa
|
44 |
+
- ms
|
45 |
+
- sl
|
46 |
+
- lv
|
47 |
+
- mr
|
48 |
+
- bn
|
49 |
+
- sq
|
50 |
+
- cy
|
51 |
+
- be
|
52 |
+
- ml
|
53 |
+
- kn
|
54 |
+
- mk
|
55 |
+
- ur
|
56 |
+
- fy
|
57 |
+
- te
|
58 |
+
- eu
|
59 |
+
- sw
|
60 |
+
- so
|
61 |
+
- sd
|
62 |
+
- uz
|
63 |
+
- co
|
64 |
+
- hr
|
65 |
+
- gu
|
66 |
+
- ce
|
67 |
+
- eo
|
68 |
+
- jv
|
69 |
+
- la
|
70 |
+
- zu
|
71 |
+
- mn
|
72 |
+
- si
|
73 |
+
- ga
|
74 |
+
- ky
|
75 |
+
- tg
|
76 |
+
- my
|
77 |
+
- km
|
78 |
+
- mg
|
79 |
+
- pa
|
80 |
+
- sn
|
81 |
+
- ha
|
82 |
+
- ht
|
83 |
+
- su
|
84 |
+
- gd
|
85 |
+
- ny
|
86 |
+
- ps
|
87 |
+
- ku
|
88 |
+
- am
|
89 |
+
- ig
|
90 |
+
- lo
|
91 |
+
- mi
|
92 |
+
- nn
|
93 |
+
- sm
|
94 |
+
- yi
|
95 |
+
- st
|
96 |
+
- tl
|
97 |
+
- xh
|
98 |
+
- yo
|
99 |
+
---
|
100 |
+
|
101 |
+
# nomic-embed-text-v2-moe: Multilingual Mixture of Experts Text Embeddings
|
102 |
+
|
103 |
+
## Model Overview
|
104 |
+
nomic-embed-text-v2-moe is SoTA multilingual MoE text embedding model:
|
105 |
+
|
106 |
+
- **High Performance**: SoTA Multilingual performance compared to ~300M parameter models, competitive with models 2x in size
|
107 |
+
- **Multilinguality**: Supports 100+ languages and trained over 1.6B pairs
|
108 |
+
- **Flexible Embedding Dimension**: Trained with [Matryoshka Embeddings](https://arxiv.org/abs/2205.13147) with 3x reductions in storage cost with minimal performance degredations
|
109 |
+
- **Fully-Open Source**: Model weights, [code](https://github.com/nomic-ai/contrastors), and training data (see code repo) released
|
110 |
+
|
111 |
+
|
112 |
+
| Model | Params (M) | Emb Dim | BEIR | MIRACL | Pretrain Data | Finetune Data | Code |
|
113 |
+
|-------|------------|----------|------|---------|---------------|---------------|------|
|
114 |
+
| Nomic Embed v2 | 305 | 768 | 52.86 | **65.80** | ✅ | ✅ | ✅ |
|
115 |
+
| mE5 Base | 278 | 768 | 48.88 | 62.30 | ❌ | ❌ | ❌ |
|
116 |
+
| mGTE Base | 305 | 768 | 51.10 | 63.40 | ❌ | ❌ | ❌ |
|
117 |
+
| Arctic Embed v2 Base | 305 | 768 | **55.40** | 59.90 | ❌ | ❌ | ❌ |
|
118 |
+
| |
|
119 |
+
| BGE M3 | 568 | 1024 | 48.80 | **69.20** | ❌ | ✅ | ❌ |
|
120 |
+
| Arctic Embed v2 Large | 568 | 1024 | **55.65** | 66.00 | ❌ | ❌ | ❌ |
|
121 |
+
| mE5 Large | 560 | 1024 | 51.40 | 66.50 | ❌ | ❌ | ❌ |
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
## Model Architecture
|
126 |
+
- **Total Parameters**: 475M
|
127 |
+
- **Active Parameters During Inference**: 305M
|
128 |
+
- **Architecture Type**: Mixture of Experts (MoE)
|
129 |
+
- **MoE Configuration**: 8 experts with top-2 routing
|
130 |
+
- **Embedding Dimensions**: Supports flexible dimension from 768 to 256 through Matryoshka representation learning
|
131 |
+
- **Maximum Sequence Length**: 512 tokens
|
132 |
+
- **Languages**: Supports dozens of languages (see Performance section)
|
133 |
+
|
134 |
+
|
135 |
+
## Usage Guide
|
136 |
+
|
137 |
+
### Installation
|
138 |
+
|
139 |
+
The model can be used through SentenceTransformers and Transformers.
|
140 |
+
|
141 |
+
**Important**: the text prompt *must* include a *task instruction prefix*, instructing the model which task is being performed.
|
142 |
+
|
143 |
+
For queries/questions, please use `search_query: ` and `search_document: ` for the corresponding document
|
144 |
+
|
145 |
+
**Transformers**
|
146 |
+
If using Transformers, **make sure to prepend the task instruction prefix**
|
147 |
|
148 |
+
```python
|
149 |
+
import torch
|
150 |
+
import torch.nn.functional as F
|
151 |
+
from transformers import AutoTokenizer, AutoModel
|
152 |
+
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained("nomic-ai/nomic-embed-text-v2-moe")
|
154 |
+
model = AutoModel.from_pretrained("nomic-ai/nomic-embed-text-v2-moe", trust_remote_code=True)
|
155 |
+
|
156 |
+
sentences = ['search_document: Hello!', 'search_document: ¡Hola!']
|
157 |
+
|
158 |
+
def mean_pooling(model_output, attention_mask):
|
159 |
+
token_embeddings = model_output[0]
|
160 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
161 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
162 |
+
|
163 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
164 |
+
model.eval()
|
165 |
+
with torch.no_grad():
|
166 |
+
model_output = model(**encoded_input)
|
167 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
168 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
```
|
170 |
|
171 |
+
**SentenceTransformers**
|
172 |
+
With SentenceTransformers, you can specify the prompt_name (query or passage)
|
173 |
```python
|
174 |
from sentence_transformers import SentenceTransformer
|
175 |
|
176 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v2-moe", trust_remote_code=True)
|
177 |
+
sentences = ["Hello!", "¡Hola!"]
|
178 |
+
embeddings = model.encode(sentences, prompt_name="passage")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
```
|
180 |
|
181 |
+
## Performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
|
|
183 |
|
184 |
+

|
|
|
185 |
|
|
|
|
|
186 |
|
187 |
+

|
|
|
188 |
|
189 |
+
## Best Practices
|
190 |
+
- Add appropriate prefixes to your text:
|
191 |
+
- For queries: "search_query: "
|
192 |
+
- For documents: "search_document: "
|
193 |
+
- Maximum input length is 512 tokens
|
194 |
+
- For optimal efficiency, consider using the 256-dimension embeddings if storage/compute is a concern
|
195 |
|
196 |
+
## Limitations
|
197 |
+
- Performance may vary across different languages
|
198 |
+
- Resource requirements may be higher than traditional dense models due to MoE architecture
|
199 |
+
- Must have trust_remote_code=True when loading the model
|
|
|
|
|
|
|
|
|
200 |
|
201 |
## Training Details
|
202 |
|
203 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
- Trained on 1.6 billion high-quality pairs across multiple languages
|
206 |
+
- Uses consistency filtering to ensure high-quality training data
|
207 |
+
- Incorporates Matryoshka representation learning for dimension flexibility
|
208 |
+
- Training includes both weakly-supervised contrastive pretraining and supervised finetuning
|
209 |
|
|
|
|
|
210 |
|
|
|
|
|
211 |
|
212 |
+
## Join the Nomic Community
|
|
|
213 |
|
214 |
+
- Nomic: [https://nomic.ai](https://nomic.ai)
|
215 |
+
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
216 |
+
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|