nnat03 commited on
Commit
3ef5802
·
verified ·
1 Parent(s): de74fad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -209
README.md CHANGED
@@ -1,216 +1,123 @@
1
  ---
2
- base_model: mistralai/Mistral-7B-Instruct-v0.2
3
- library_name: peft
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ## Training procedure
201
-
202
- The following `bitsandbytes` quantization config was used during training:
203
- - quant_method: bitsandbytes
204
- - load_in_8bit: False
205
- - load_in_4bit: True
206
- - llm_int8_threshold: 6.0
207
- - llm_int8_skip_modules: None
208
- - llm_int8_enable_fp32_cpu_offload: False
209
- - llm_int8_has_fp16_weight: False
210
- - bnb_4bit_quant_type: nf4
211
- - bnb_4bit_use_double_quant: True
212
- - bnb_4bit_compute_dtype: bfloat16
213
-
214
- ### Framework versions
215
-
216
- - PEFT 0.7.0
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - mistral
6
+ - lora
7
+ - adapter
8
+ - fine-tuned
9
+ - politics
10
+ - conversational
11
+ license: mit
12
+ datasets:
13
+ - rohanrao/joe-biden-tweets
14
+ - christianlillelund/joe-biden-2020-dnc-speech
15
  ---
16
 
17
+ # Biden Mistral Adapter
 
 
 
18
 
19
+ This is a LoRA adapter for the [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model, fine-tuned to emulate Joe Biden's distinctive speaking style, discourse patterns, and policy positions.
20
 
21
  ## Model Details
22
 
23
+ - **Base Model**: [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
24
+ - **Model Type**: LoRA adapter (Low-Rank Adaptation)
25
+ - **LoRA Rank**: 16
26
+ - **Language**: English
27
+ - **Training Focus**: Emulation of Joe Biden's communication style and response patterns
28
+
29
+ ## Intended Use
30
+
31
+ This model is designed for:
32
+ - Educational and research purposes related to political discourse and communication styles
33
+ - Interactive simulations for understanding political rhetoric
34
+ - Creative applications exploring political communication
35
+
36
+ ## Training Data
37
+
38
+ This adapter was fine-tuned on two key datasets:
39
+ - [Biden tweets dataset (2007-2020)](https://www.kaggle.com/datasets/rohanrao/joe-biden-tweets)
40
+ - [Biden 2020 DNC speech dataset](https://www.kaggle.com/datasets/christianlillelund/joe-biden-2020-dnc-speech)
41
+
42
+ These datasets were processed into an instruction format:
43
+
44
+ ## Training Procedure
45
+
46
+ - **Framework**: Hugging Face Transformers and PEFT
47
+ - **Optimization**: 4-bit quantization for memory efficiency
48
+ - **LoRA Configuration**:
49
+ - `r=16`
50
+ - `lora_alpha=64`
51
+ - `lora_dropout=0.05`
52
+ - Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
53
+ - **Training Parameters**:
54
+ - Batch size: 4
55
+ - Gradient accumulation steps: 4
56
+ - Learning rate: 2e-4
57
+ - Epochs: 3
58
+ - Learning rate scheduler: cosine
59
+ - Optimizer: paged_adamw_8bit
60
+ - BF16 precision
61
+
62
+ ## Limitations and Biases
63
+
64
+ - The model is designed to mimic a speaking style and may not always provide factually accurate information
65
+ - While it emulates Biden's rhetoric, it does not represent his actual views or statements
66
+ - The model may reproduce biases present in the training data
67
+ - Not suitable for production applications requiring factual accuracy without RAG enhancement
68
+
69
+ ## Usage
70
+
71
+ This adapter should be applied to the Mistral-7B-Instruct-v0.2 base model:
72
+
73
+ ```python
74
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
75
+ from peft import PeftModel
76
+ import torch
77
+
78
+ # Load base model with 4-bit quantization
79
+ base_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
80
+ bnb_config = BitsAndBytesConfig(
81
+ load_in_4bit=True,
82
+ bnb_4bit_compute_dtype=torch.float16,
83
+ bnb_4bit_quant_type="nf4",
84
+ bnb_4bit_use_double_quant=True,
85
+ )
86
+
87
+ # Load model and tokenizer
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ base_model_id,
90
+ quantization_config=bnb_config,
91
+ device_map="auto",
92
+ torch_dtype=torch.float16
93
+ )
94
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id)
95
+
96
+ # Apply the adapter
97
+ model = PeftModel.from_pretrained(model, "nnat03/biden-mistral-adapter")
98
+
99
+ # Generate a response
100
+ prompt = "What's your vision for America's future?"
101
+ input_text = f"<s>[INST] {prompt} [/INST]"
102
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
103
+ outputs = model.generate(**inputs, max_length=512, temperature=0.7, do_sample=True)
104
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
105
+ print(response.split("[/INST]")[-1].strip())
106
+ ```
107
+
108
+ ## Citation and Acknowledgments
109
+
110
+ If you use this model in your research, please cite:
111
+
112
+ @misc{nnat03-biden-mistral-adapter,
113
+ author = {nnat03},
114
+ title = {Biden Mistral Adapter},
115
+ year = {2023},
116
+ publisher = {Hugging Face},
117
+ howpublished = {\url{https://huggingface.co/nnat03/biden-mistral-adapter}}
118
+ }
119
+
120
+
121
+ ## Ethical Considerations
122
+
123
+ This model is created for educational and research purposes. It attempts to mimic the speaking style of a public figure but does not represent their actual views or statements. Use responsibly.