nm-research commited on
Commit
7c5480b
·
verified ·
1 Parent(s): 7038b0e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -3
README.md CHANGED
@@ -1,4 +1,150 @@
1
  ---
2
- base_model:
3
- - Qwen/QwQ-32B
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ tags:
4
+ - qwen
5
+ - qwq
6
+ - fp8
7
+ - vllm
8
+ base_model: Qwen/QwQ-32B
9
+ library_name: transformers
10
+ ---
11
+
12
+ # QwQ-32B-FP8-dynamic
13
+
14
+ ## Model Overview
15
+ - **Model Architecture:** Qwen2ForCausalLM
16
+ - **Input:** Text
17
+ - **Output:** Text
18
+ - **Model Optimizations:**
19
+ - **Weight quantization:** FP8
20
+ - **Activation quantization:** FP8
21
+ - **Release Date:** 3/6/2025
22
+ - **Version:** 1.0
23
+ - **Model Developers:** Neural Magic
24
+
25
+ Quantized version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B).
26
+
27
+
28
+ ### Model Optimizations
29
+
30
+ This model was obtained by quantizing the weights and activations of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) to FP8 data type.
31
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
32
+
33
+ Only the weights and activations of the linear operators within transformers blocks are quantized.
34
+ Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme.
35
+ [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
36
+
37
+
38
+ ## Use with vLLM
39
+
40
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer
44
+ from vllm import LLM, SamplingParams
45
+
46
+ number_gpus = 1
47
+ model_name = "neuralmagic/QwQ-32B-FP8-dynamic"
48
+
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+ sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
51
+ llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)
52
+
53
+ messages_list = [
54
+ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
55
+ ]
56
+
57
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
58
+
59
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
60
+
61
+ generated_text = [output.outputs[0].text for output in outputs]
62
+ print(generated_text)
63
+ ```
64
+
65
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
66
+
67
+ ## Creation
68
+
69
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
70
+
71
+
72
+ ```python
73
+ from transformers import AutoModelForCausalLM, AutoTokenizer
74
+ from llmcompressor.modifiers.quantization import QuantizationModifier
75
+ from llmcompressor.transformers import oneshot
76
+ import os
77
+
78
+ # Load model
79
+ model_stub = "Qwen/QwQ-32B"
80
+ model_name = model_stub.split("/")[-1]
81
+
82
+ model = AutoModelForCausalLM.from_pretrained(
83
+ model_stub,
84
+ torch_dtype="auto",
85
+ )
86
+
87
+ tokenizer = AutoTokenizer.from_pretrained(model_stub)
88
+
89
+ # Configure the quantization algorithm and scheme
90
+ recipe = QuantizationModifier(
91
+ targets="Linear",
92
+ scheme="FP8_DYNAMIC",
93
+ ignore=["lm_head"],
94
+ )
95
+
96
+ # Apply quantization
97
+ oneshot(
98
+ model=model,
99
+ recipe=recipe,
100
+ )
101
+
102
+ # Save to disk in compressed-tensors format
103
+ save_path = model_name + "-FP8-dynamic
104
+ model.save_pretrained(save_path)
105
+ tokenizer.save_pretrained(save_path)
106
+ print(f"Model and tokenizer saved to: {save_path}")
107
+ ```
108
+
109
+
110
+ ### Accuracy
111
+
112
+ <table>
113
+ <thead>
114
+ <tr>
115
+ <th>Category</th>
116
+ <th>Metric</th>
117
+ <th>Qwen/QwQ-32B</th>
118
+ <th>neuralmagic/QwQ-32B-FP8-dynamic</th>
119
+ <th>Recovery</th>
120
+ </tr>
121
+ </thead>
122
+ <tbody>
123
+ <tr>
124
+ <td rowspan="4"><b>Reasoning</b></td>
125
+ <td>AIME 2024 (pass@1)</td> 78.66, 97.39, 64.72; 79.50, 97.44, 63.21
126
+ <td>78.66</td>
127
+ <td>79.40</td>
128
+ <td>100.94%</td>
129
+ </tr>
130
+ <tr>
131
+ <td>MATH-500 (pass@1)</td>
132
+ <td>97.39</td>
133
+ <td>97.44</td>
134
+ <td>100.05%</td>
135
+ </tr>
136
+ <tr>
137
+ <td>GPQA Diamond (pass@1)</td>
138
+ <td>64.72</td>
139
+ <td>63.21</td>
140
+ <td>97.66%</td>
141
+ </tr>
142
+ <tr>
143
+ <td><b>Average Score</b></td>
144
+ <td><b>80.25</b></td>
145
+ <td><b>80.05</b></td>
146
+ <td><b>99.75%</b></td>
147
+ </tr>
148
+
149
+ </tbody>
150
+ </table>