--- base_model: - deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct --- Created using llm-compressor for use with vLLM: ```python from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot # NOTE: transformers 4.48.0 has an import error with DeepSeek. # Please consider either downgrading your transformers version to a # previous version or upgrading to a version where this bug is fixed # select a Mixture of Experts model for quantization MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Select calibration dataset. # its recommended to use more calibration samples for MoE models so each expert is hit DATASET_ID = "HuggingFaceH4/ultrachat_200k" DATASET_SPLIT = "train_sft" NUM_CALIBRATION_SAMPLES = 2048 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): return { "text": tokenizer.apply_chat_template( example["messages"], tokenize=False, ) } ds = ds.map(preprocess) # Tokenize inputs. def tokenize(sample): return tokenizer( sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False, ) ds = ds.map(tokenize, remove_columns=ds.column_names) # define a llmcompressor recipe for FP8 W8A8 quantization # since the MoE gate layers are sensitive to quantization, we add them to the ignore # list so they remain at full precision recipe = [ QuantizationModifier( targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*mlp.gate$"], ), ] SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8" oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, save_compressed=True, output_dir=SAVE_DIR, ) print("========== SAMPLE GENERATION ==============") SAMPLE_INPUT = ["I love quantization because"] tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) inputs = tokenizer(SAMPLE_INPUT, return_tensors="pt", padding=True).to(model.device) output = model.generate(**inputs, max_length=50) text_output = tokenizer.batch_decode(output) print(text_output) ```