--- base_model: aubmindlab/aragpt2-base tags: - generated_from_trainer metrics: - bleu - rouge model-index: - name: res_nw_lev_aragpt2-base results: [] --- # res_nw_lev_aragpt2-base This model is a fine-tuned version of [aubmindlab/aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0520 - Bleu: 0.1724 - Rouge1: 0.5243 - Rouge2: 0.3044 - Rougel: 0.5218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| | 0.26 | 1.0 | 5062 | 0.0696 | 0.0245 | 0.3013 | 0.0862 | 0.2973 | | 0.0691 | 2.0 | 10124 | 0.0627 | 0.0520 | 0.3752 | 0.1476 | 0.3720 | | 0.061 | 3.0 | 15186 | 0.0592 | 0.0728 | 0.4151 | 0.1846 | 0.4119 | | 0.055 | 4.0 | 20248 | 0.0568 | 0.0853 | 0.4403 | 0.2078 | 0.4371 | | 0.0501 | 5.0 | 25310 | 0.0552 | 0.1006 | 0.4609 | 0.2304 | 0.4581 | | 0.0458 | 6.0 | 30372 | 0.0542 | 0.1181 | 0.4821 | 0.2520 | 0.4793 | | 0.0421 | 7.0 | 35434 | 0.0534 | 0.1341 | 0.4963 | 0.2701 | 0.4938 | | 0.0389 | 8.0 | 40496 | 0.0527 | 0.1531 | 0.5119 | 0.2877 | 0.5094 | | 0.036 | 9.0 | 45558 | 0.0520 | 0.1724 | 0.5243 | 0.3044 | 0.5218 | | 0.0335 | 10.0 | 50620 | 0.0522 | 0.1916 | 0.5355 | 0.3184 | 0.5331 | | 0.0314 | 11.0 | 55682 | 0.0526 | 0.2161 | 0.5483 | 0.3340 | 0.5464 | | 0.0295 | 12.0 | 60744 | 0.0531 | 0.2349 | 0.5567 | 0.3463 | 0.5542 | | 0.0278 | 13.0 | 65806 | 0.0534 | 0.2526 | 0.5650 | 0.3578 | 0.5630 | | 0.0264 | 14.0 | 70868 | 0.0542 | 0.2696 | 0.5713 | 0.3696 | 0.5696 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1