File size: 2,680 Bytes
e7ce2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb807b8
 
 
 
 
e7ce2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: aubmindlab/aragpt2-base
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: res_nw_lev_aragpt2-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# res_nw_lev_aragpt2-base

This model is a fine-tuned version of [aubmindlab/aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Bleu: 0.1724
- Rouge1: 0.5243
- Rouge2: 0.3044
- Rougel: 0.5218

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Rouge1 | Rouge2 | Rougel |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|
| 0.26          | 1.0   | 5062  | 0.0696          | 0.0245 | 0.3013 | 0.0862 | 0.2973 |
| 0.0691        | 2.0   | 10124 | 0.0627          | 0.0520 | 0.3752 | 0.1476 | 0.3720 |
| 0.061         | 3.0   | 15186 | 0.0592          | 0.0728 | 0.4151 | 0.1846 | 0.4119 |
| 0.055         | 4.0   | 20248 | 0.0568          | 0.0853 | 0.4403 | 0.2078 | 0.4371 |
| 0.0501        | 5.0   | 25310 | 0.0552          | 0.1006 | 0.4609 | 0.2304 | 0.4581 |
| 0.0458        | 6.0   | 30372 | 0.0542          | 0.1181 | 0.4821 | 0.2520 | 0.4793 |
| 0.0421        | 7.0   | 35434 | 0.0534          | 0.1341 | 0.4963 | 0.2701 | 0.4938 |
| 0.0389        | 8.0   | 40496 | 0.0527          | 0.1531 | 0.5119 | 0.2877 | 0.5094 |
| 0.036         | 9.0   | 45558 | 0.0520          | 0.1724 | 0.5243 | 0.3044 | 0.5218 |
| 0.0335        | 10.0  | 50620 | 0.0522          | 0.1916 | 0.5355 | 0.3184 | 0.5331 |
| 0.0314        | 11.0  | 55682 | 0.0526          | 0.2161 | 0.5483 | 0.3340 | 0.5464 |
| 0.0295        | 12.0  | 60744 | 0.0531          | 0.2349 | 0.5567 | 0.3463 | 0.5542 |
| 0.0278        | 13.0  | 65806 | 0.0534          | 0.2526 | 0.5650 | 0.3578 | 0.5630 |
| 0.0264        | 14.0  | 70868 | 0.0542          | 0.2696 | 0.5713 | 0.3696 | 0.5696 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1