File size: 1,347 Bytes
18cdc2d 05de898 2bf2c45 204eecb 2bf2c45 05de898 18cdc2d 05de898 18cdc2d 05de898 18cdc2d c9c90db a05d43a 18cdc2d 05de898 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
## Overview
```
Language model: Pegasus-xsum
Language: English
Downstream-task: Question-Answering Generation
Training data: SQuAD 2.0, NewsQA
Eval data: SQuAD 2.0, NewsQA
Infrastructure: Nvidia Tesla K80 12Gb RAM
```
## Hyperparameters
```
per_device_train_batch_size = 2
per_device_eval_batch_size = 2
num_train_epochs = 3
base_LM_model = "pegasus-xsum"
source_max_token_len = 256
target_max_token_len = 64
learning_rate = 5e-5
lr_schedule = LinearWarmup
warmup_steps = 150
```
## Usage
```python
import transformers
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
model_name = 'nloc2578/QAG_Pegasus_3ep_eval'
tokenizer = PegasusTokenizerFast.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id)
text = '''The primary goal of distractor generation is generating answer
options that are plausibly answers to the question, and might appear
correct to a user who does know the correct answer. Distractors
should also be clearly distinct from the key and each other and
they should not be correct answers to the question (for questions
that might have multiple correct answers).'''
input_id = tokenizer(text, return_tensors='pt')
output = model.generate(input_id['input_ids'])
result = tokenizer.decode(output[0])
print(result)
``` |