nirusanan commited on
Commit
aba3455
·
verified ·
1 Parent(s): 1dbf3a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -195
README.md CHANGED
@@ -1,199 +1,136 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - en
5
+ base_model:
6
+ - huawei-noah/TinyBERT_General_4L_312D
7
+ pipeline_tag: token-classification
8
  ---
9
 
10
+ # Model Description
11
+ Keyphrase extraction is a technique in text analysis where you extract the keyphrases from a paragraph.
12
+
13
+ The **tinyBert-keyword** model is a fine-tuned version of the huawei-noah/TinyBERT_General_4L_312D model, tailored specifically for Keyphrase extraction.
14
+
15
+ **huawei-noah/TinyBERT_General_4L_312D** is a distilled version of BERT, specifically designed to be smaller and faster for general NLP tasks.
16
+
17
+ - **Finetuned from:** huawei-noah/TinyBERT_General_4L_312D
18
+
19
+
20
+ ## How to use
21
+ ```python
22
+ import torch
23
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
24
+ ```
25
+
26
+ ```python
27
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
28
+ import difflib
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("nirusanan/tinyBert-keyword")
31
+ model = AutoModelForTokenClassification.from_pretrained("nirusanan/tinyBert-keyword").to(device)
32
+ ```
33
+
34
+ ```python
35
+ text = """
36
+ Computer Vision: VLMs are trained on large datasets of images, videos, or other visual data. They use deep neural networks to extract features and represent the visual information.
37
+ Natural Language Processing (NLP): VLMs are also trained on large datasets of text, which enables them to understand and generate natural language.
38
+ Cross-modal Interaction: The combination of computer vision and NLP allows the VLM to interact and process both visual and textual data in a unified manner.
39
+ Types of Vision Language Models:
40
+
41
+ Visual-Bert: Visual-BERT (Bilinear Pooling for Visual Question Answering) is a popular VLM that uses a combination of visual feature extractors and language models.
42
+ LXMERT: LXMERT (Large Scale Instance and Instance-Specific Multimodal Representation Learning) is a VLM designed for visual reasoning and question answering tasks.
43
+ VL-BERT: VL-BERT (Visual Large Language Bert) is a VLM that uses a transformer-based architecture to model visual and textual representations.
44
+ """
45
+ ```
46
+
47
+ ```python
48
+ id2label = model.config.id2label
49
+
50
+ tokenized = tokenizer(
51
+ text,
52
+ padding=True,
53
+ truncation=True,
54
+ return_offsets_mapping=True,
55
+ return_tensors="pt"
56
+ )
57
+
58
+ input_ids = tokenized["input_ids"].to(device)
59
+ attention_mask = tokenized["attention_mask"].to(device)
60
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask)
61
+ predictions = torch.argmax(outputs.logits, dim=2)
62
+
63
+ tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
64
+ token_predictions = [id2label[pred.item()] for pred in predictions[0]]
65
+ ```
66
+
67
+ ```python
68
+ entities = []
69
+ current_entity = None
70
+
71
+ for idx, (token, pred) in enumerate(zip(tokens, token_predictions)):
72
+ if pred.startswith("B-"):
73
+ if current_entity:
74
+ entities.append(current_entity)
75
+ current_entity = {"type": pred[2:], "start": idx, "text": token}
76
+ elif pred.startswith("I-") and current_entity:
77
+ current_entity["text"] += f" {token}"
78
+ elif current_entity:
79
+ entities.append(current_entity)
80
+ current_entity = None
81
+
82
+ if current_entity:
83
+ entities.append(current_entity)
84
+ ```
85
+
86
+ ```python
87
+ keywords = []
88
+ for i in entities:
89
+ keywords.append(i['text'])
90
+ ```
91
+
92
+ ```python
93
+ def clean_keyword(keyword):
94
+ return keyword.replace(" ##", "")
95
+
96
+ def find_closest_word(keyword, word_positions):
97
+ keyword_cleaned = clean_keyword(keyword)
98
+ best_match = None
99
+ best_score = float('inf')
100
+
101
+ for pos, word in word_positions.items():
102
+ score = difflib.SequenceMatcher(None, keyword_cleaned, word).ratio()
103
+ if score > 0.8 and (best_match is None or score > best_score):
104
+ best_match = word
105
+ best_score = score
106
+
107
+ return best_match or keyword_cleaned
108
+ ```
109
+
110
+ ```python
111
+ words = text.split()
112
+ word_positions = {i: word.strip(".,") for i, word in enumerate(words)}
113
+
114
+ cleaned_keywords = []
115
+ for keyword in keywords:
116
+ closest_word = find_closest_word(keyword, word_positions)
117
+ cleaned_keywords.append({'text': closest_word})
118
+ ```
119
+
120
+ ```python
121
+ unique_keywords = {}
122
+ for item in cleaned_keywords:
123
+ text = item['text'].lower()
124
+ if text not in unique_keywords:
125
+ unique_keywords[text] = item
126
+
127
+ cleaned_keywords_unique = list(unique_keywords.values())
128
+
129
+ if len(cleaned_keywords_unique) > 5:
130
+ final_keywords = cleaned_keywords_unique[:5]
131
+ else:
132
+ final_keywords = cleaned_keywords_unique
133
+
134
+ text_values = [item['text'] for item in final_keywords]
135
+ text_values
136
+ ```