Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,136 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- huawei-noah/TinyBERT_General_4L_312D
|
| 7 |
+
pipeline_tag: token-classification
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Model Description
|
| 11 |
+
Keyphrase extraction is a technique in text analysis where you extract the keyphrases from a paragraph.
|
| 12 |
+
|
| 13 |
+
The **tinyBert-keyword** model is a fine-tuned version of the huawei-noah/TinyBERT_General_4L_312D model, tailored specifically for Keyphrase extraction.
|
| 14 |
+
|
| 15 |
+
**huawei-noah/TinyBERT_General_4L_312D** is a distilled version of BERT, specifically designed to be smaller and faster for general NLP tasks.
|
| 16 |
+
|
| 17 |
+
- **Finetuned from:** huawei-noah/TinyBERT_General_4L_312D
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## How to use
|
| 21 |
+
```python
|
| 22 |
+
import torch
|
| 23 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 28 |
+
import difflib
|
| 29 |
+
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("nirusanan/tinyBert-keyword")
|
| 31 |
+
model = AutoModelForTokenClassification.from_pretrained("nirusanan/tinyBert-keyword").to(device)
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
text = """
|
| 36 |
+
Computer Vision: VLMs are trained on large datasets of images, videos, or other visual data. They use deep neural networks to extract features and represent the visual information.
|
| 37 |
+
Natural Language Processing (NLP): VLMs are also trained on large datasets of text, which enables them to understand and generate natural language.
|
| 38 |
+
Cross-modal Interaction: The combination of computer vision and NLP allows the VLM to interact and process both visual and textual data in a unified manner.
|
| 39 |
+
Types of Vision Language Models:
|
| 40 |
+
|
| 41 |
+
Visual-Bert: Visual-BERT (Bilinear Pooling for Visual Question Answering) is a popular VLM that uses a combination of visual feature extractors and language models.
|
| 42 |
+
LXMERT: LXMERT (Large Scale Instance and Instance-Specific Multimodal Representation Learning) is a VLM designed for visual reasoning and question answering tasks.
|
| 43 |
+
VL-BERT: VL-BERT (Visual Large Language Bert) is a VLM that uses a transformer-based architecture to model visual and textual representations.
|
| 44 |
+
"""
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
id2label = model.config.id2label
|
| 49 |
+
|
| 50 |
+
tokenized = tokenizer(
|
| 51 |
+
text,
|
| 52 |
+
padding=True,
|
| 53 |
+
truncation=True,
|
| 54 |
+
return_offsets_mapping=True,
|
| 55 |
+
return_tensors="pt"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
input_ids = tokenized["input_ids"].to(device)
|
| 59 |
+
attention_mask = tokenized["attention_mask"].to(device)
|
| 60 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 61 |
+
predictions = torch.argmax(outputs.logits, dim=2)
|
| 62 |
+
|
| 63 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
| 64 |
+
token_predictions = [id2label[pred.item()] for pred in predictions[0]]
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
entities = []
|
| 69 |
+
current_entity = None
|
| 70 |
+
|
| 71 |
+
for idx, (token, pred) in enumerate(zip(tokens, token_predictions)):
|
| 72 |
+
if pred.startswith("B-"):
|
| 73 |
+
if current_entity:
|
| 74 |
+
entities.append(current_entity)
|
| 75 |
+
current_entity = {"type": pred[2:], "start": idx, "text": token}
|
| 76 |
+
elif pred.startswith("I-") and current_entity:
|
| 77 |
+
current_entity["text"] += f" {token}"
|
| 78 |
+
elif current_entity:
|
| 79 |
+
entities.append(current_entity)
|
| 80 |
+
current_entity = None
|
| 81 |
+
|
| 82 |
+
if current_entity:
|
| 83 |
+
entities.append(current_entity)
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
keywords = []
|
| 88 |
+
for i in entities:
|
| 89 |
+
keywords.append(i['text'])
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
def clean_keyword(keyword):
|
| 94 |
+
return keyword.replace(" ##", "")
|
| 95 |
+
|
| 96 |
+
def find_closest_word(keyword, word_positions):
|
| 97 |
+
keyword_cleaned = clean_keyword(keyword)
|
| 98 |
+
best_match = None
|
| 99 |
+
best_score = float('inf')
|
| 100 |
+
|
| 101 |
+
for pos, word in word_positions.items():
|
| 102 |
+
score = difflib.SequenceMatcher(None, keyword_cleaned, word).ratio()
|
| 103 |
+
if score > 0.8 and (best_match is None or score > best_score):
|
| 104 |
+
best_match = word
|
| 105 |
+
best_score = score
|
| 106 |
+
|
| 107 |
+
return best_match or keyword_cleaned
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
words = text.split()
|
| 112 |
+
word_positions = {i: word.strip(".,") for i, word in enumerate(words)}
|
| 113 |
+
|
| 114 |
+
cleaned_keywords = []
|
| 115 |
+
for keyword in keywords:
|
| 116 |
+
closest_word = find_closest_word(keyword, word_positions)
|
| 117 |
+
cleaned_keywords.append({'text': closest_word})
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
unique_keywords = {}
|
| 122 |
+
for item in cleaned_keywords:
|
| 123 |
+
text = item['text'].lower()
|
| 124 |
+
if text not in unique_keywords:
|
| 125 |
+
unique_keywords[text] = item
|
| 126 |
+
|
| 127 |
+
cleaned_keywords_unique = list(unique_keywords.values())
|
| 128 |
+
|
| 129 |
+
if len(cleaned_keywords_unique) > 5:
|
| 130 |
+
final_keywords = cleaned_keywords_unique[:5]
|
| 131 |
+
else:
|
| 132 |
+
final_keywords = cleaned_keywords_unique
|
| 133 |
+
|
| 134 |
+
text_values = [item['text'] for item in final_keywords]
|
| 135 |
+
text_values
|
| 136 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|