Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 204.77 +/- 22.36
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc845385830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc8453858c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc845385950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc8453859e0>", "_build": "<function ActorCriticPolicy._build at 0x7fc845385a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fc845385b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc845385b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc845385c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc845385cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc845385d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc845385dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc8453d7570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653042950.159827, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGrKgPizQjz+O/ms+uiycvtFhsD7ll8i9AAAAAAAAAAD43rK+HeQrP5kyOj0Wpna+bfKbu1Xx6b0AAAAAAAAAAGYhMr72UTs7ZU/Wu2FoKjnPBvq8K88ZugAAgD8AAIA/LVV3PqLYAT+HeTi+kc43vo/01TxNmAC+AAAAAAAAAACax2c83MsfP+xHxLwRcSm+4Y00PZYTibwAAAAAAAAAAACoaTv2XC66YQOcvONEo7bwupg6S1UUNgAAgD8AAIA/pnWpvd3xjz/m1+o8R+VMvlpCcTxJs7s9AAAAAAAAAACqJ4Q+pLg8PG1yWznXamc3HrWzPd1mhbgAAIA/AACAPwAs1D0pFCe63WLvuwiYgTaBMKG7RtLttQAAgD8AAIA/zcJsPMbZgD8t+CI9fNKlvvvGLT7FYe88AAAAAAAAAACalaU9XE9iugzAA7zsrQO2A/Ybu5YybDUAAIA/AACAP4A1zj0mjCU/amyCvVBcDb73dAO9JRORPQAAAAAAAAAA5oc4vR919LldEiu6182CtW2FhjtHLEY5AACAPwAAgD9aLpg9990lP6CsjzxRQD2+Y4uYvPfHyj0AAAAAAAAAADNKZj2PbkS6e5ddN3zdDTUcx5C6/9SAtgAAgD8AAIA/mitVvMNheboysRQ63h5ENf7kDzpy5Sy5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIacNhaeD1RcCUhpRSlIwBbJRNKAGMAXSUR0CCQvzEJjUedX2UKGgGaAloD0MIwEF79fHQBkCUhpRSlGgVTUwBaBZHQIJEBdt2s7x1fZQoaAZoCWgPQwiRYRVvZC4wQJSGlFKUaBVNOgFoFkdAglIizkZJkHV9lChoBmgJaA9DCL8Qct7/4l5AlIaUUpRoFU3oA2gWR0CCXcMsH0K7dX2UKGgGaAloD0MIpdsSueDIXUCUhpRSlGgVTegDaBZHQIJlddPci4d1fZQoaAZoCWgPQwgzbf/KSpJQQJSGlFKUaBVN6ANoFkdAgmna7VawEHV9lChoBmgJaA9DCJuRQe4iol5AlIaUUpRoFU3oA2gWR0CCcCygwoLHdX2UKGgGaAloD0MIwhiRKLT0I0CUhpRSlGgVTegDaBZHQIJykxGlQ/J1fZQoaAZoCWgPQwiJJeXuc55RQJSGlFKUaBVN6ANoFkdAgoI4A0bcXXV9lChoBmgJaA9DCFx1HaqptGBAlIaUUpRoFU3oA2gWR0CCiMJTl1bJdX2UKGgGaAloD0MI1/fhIKF9YkCUhpRSlGgVTegDaBZHQIKJ4hbGFSN1fZQoaAZoCWgPQwi/KaxUUFhaQJSGlFKUaBVN6ANoFkdAgoqqm8/Uv3V9lChoBmgJaA9DCAxAo3Tp5GNAlIaUUpRoFU3oA2gWR0CCjLnq3VkMdX2UKGgGaAloD0MIccrcfCMUVkCUhpRSlGgVTegDaBZHQIKMwAuIyj51fZQoaAZoCWgPQwimRX2SO7NVQJSGlFKUaBVN6ANoFkdAgrvAAAAAAHV9lChoBmgJaA9DCFD+7h019kDAlIaUUpRoFUvqaBZHQILP4JeE7GN1fZQoaAZoCWgPQwhxIY/gRhZXQJSGlFKUaBVN6ANoFkdAgtqqP4mCy3V9lChoBmgJaA9DCAe139oJ2WFAlIaUUpRoFU3oA2gWR0CC7YRSxZ+ydX2UKGgGaAloD0MIQwHbwYiNXECUhpRSlGgVTegDaBZHQILuvPZ7HAB1fZQoaAZoCWgPQwg9t9CVCOBIQJSGlFKUaBVN6ANoFkdAgv82attALXV9lChoBmgJaA9DCDRlpx9ULGJAlIaUUpRoFU3oA2gWR0CDC0VfNRm9dX2UKGgGaAloD0MIZVBtcCImNUCUhpRSlGgVS/1oFkdAgxLMwUQCjnV9lChoBmgJaA9DCIQtdvusw11AlIaUUpRoFU3oA2gWR0CDE6ANoakzdX2UKGgGaAloD0MIbY/ecB+ZWECUhpRSlGgVTegDaBZHQIMYHdEb5uZ1fZQoaAZoCWgPQwheSIeHsEhgQJSGlFKUaBVN6ANoFkdAgx4bSApazXV9lChoBmgJaA9DCFzGTQ00yVpAlIaUUpRoFU3oA2gWR0CDIHDu0CzUdX2UKGgGaAloD0MIjXqIRnfqU0CUhpRSlGgVTegDaBZHQIMvygPEsJ91fZQoaAZoCWgPQwiQZ5dvfWViQJSGlFKUaBVN6ANoFkdAgzWxyn1nNHV9lChoBmgJaA9DCGiVmdL6O1VAlIaUUpRoFU3oA2gWR0CDNrVktmL+dX2UKGgGaAloD0MIgCkDB7RZWECUhpRSlGgVTegDaBZHQIM3Zkf9xZN1fZQoaAZoCWgPQwgR/G8lO1liQJSGlFKUaBVN6ANoFkdAgzk0H6dlNHV9lChoBmgJaA9DCP1K58Ozkk9AlIaUUpRoFU3oA2gWR0CDZ+z7di2EdX2UKGgGaAloD0MIbsST3cy1XkCUhpRSlGgVTegDaBZHQIN7Vy925hB1fZQoaAZoCWgPQwjaklURbj4/QJSGlFKUaBVNEQFoFkdAg341O0svqXV9lChoBmgJaA9DCGXCL/Vz+2FAlIaUUpRoFU3oA2gWR0CDhOAsCkoGdX2UKGgGaAloD0MIKzQQy2bdW0CUhpRSlGgVTegDaBZHQIOV0iyIHkd1fZQoaAZoCWgPQwhWtg95y3NgQJSGlFKUaBVN6ANoFkdAg6a/vOQhfXV9lChoBmgJaA9DCILJjSJrLmFAlIaUUpRoFU3oA2gWR0CDswFhXr+pdX2UKGgGaAloD0MIX5uNlZjtRECUhpRSlGgVTegDaBZHQIO6fgpBomJ1fZQoaAZoCWgPQwhC7Eyh81pZQJSGlFKUaBVN6ANoFkdAg7tV81Gb1HV9lChoBmgJaA9DCHfZrzvdGlpAlIaUUpRoFU3oA2gWR0CDv6hWYF7ldX2UKGgGaAloD0MID4EjgQadWkCUhpRSlGgVTegDaBZHQIPFk2LpA2R1fZQoaAZoCWgPQwipT3KHTXZRQJSGlFKUaBVN6ANoFkdAg8fYNI9TxXV9lChoBmgJaA9DCEiKyLCK8VxAlIaUUpRoFU3oA2gWR0CD1pgtOEdvdX2UKGgGaAloD0MIsMqFyr9OPECUhpRSlGgVTUcBaBZHQIPcLt3OfNB1fZQoaAZoCWgPQwhj0AmhgyZVQJSGlFKUaBVN6ANoFkdAg9zNAs052nV9lChoBmgJaA9DCHr+tFEdQWBAlIaUUpRoFU3oA2gWR0CD3b0/W1+idX2UKGgGaAloD0MI3LqbpzqEEcCUhpRSlGgVTSoBaBZHQIPfoo1DSgJ1fZQoaAZoCWgPQwiYpDLFHA5YQJSGlFKUaBVN6ANoFkdAg+BNeUpuuXV9lChoBmgJaA9DCBGMg0vHOmZAlIaUUpRoFU33AWgWR0CD5hkuHvc8dX2UKGgGaAloD0MITMecZ+z7VkCUhpRSlGgVTegDaBZHQIQPB2OhkAh1fZQoaAZoCWgPQwjTE5Z4QIksQJSGlFKUaBVNWgFoFkdAhBXgOavzOHV9lChoBmgJaA9DCDvgumJGv15AlIaUUpRoFU3oA2gWR0CEIMMaS9uhdX2UKGgGaAloD0MI4uXpXFEqJECUhpRSlGgVTTkBaBZHQIQgyQT238Z1fZQoaAZoCWgPQwgAOPbsucBWQJSGlFKUaBVN6ANoFkdAhCNIVVPva3V9lChoBmgJaA9DCPJetTLh4WRAlIaUUpRoFU3oA2gWR0CEKQ68xsVMdX2UKGgGaAloD0MILQYP075hYECUhpRSlGgVTegDaBZHQIQ5bm8ujAV1fZQoaAZoCWgPQwiqu7ILBixfQJSGlFKUaBVN6ANoFkdAhGLgIyCWeHV9lChoBmgJaA9DCOj6PhwkeVdAlIaUUpRoFU3oA2gWR0CEaZ+NtIkJdX2UKGgGaAloD0MIteIbCh8jYECUhpRSlGgVTegDaBZHQIRxqrtE5Qx1fZQoaAZoCWgPQwiMvoI0YzxeQJSGlFKUaBVN6ANoFkdAhJAY0VJti3V9lChoBmgJaA9DCG/1nPS+d19AlIaUUpRoFU3oA2gWR0CEkOEB8x9HdX2UKGgGaAloD0MIuDzWjAyaW0CUhpRSlGgVTegDaBZHQISSGJBPbfx1fZQoaAZoCWgPQwiZEd4ehO5cQJSGlFKUaBVN6ANoFkdAhJSIQ4CIUXV9lChoBmgJaA9DCOwTQDGy7FtAlIaUUpRoFU3oA2gWR0CElVmapgkUdX2UKGgGaAloD0MI5UF6ipxcYUCUhpRSlGgVTegDaBZHQIScDJU5uIh1fZQoaAZoCWgPQwhf0a3X9PNfQJSGlFKUaBVN6ANoFkdAhJ+RREWqLnV9lChoBmgJaA9DCNpWs874p1VAlIaUUpRoFU3oA2gWR0CEzHHjp9qldX2UKGgGaAloD0MIjbgANMpmYECUhpRSlGgVTegDaBZHQITXKtA9mpV1fZQoaAZoCWgPQwha8KKvINdeQJSGlFKUaBVN6ANoFkdAhNcyGahHsnV9lChoBmgJaA9DCKPMBplkYFlAlIaUUpRoFU3oA2gWR0CE2cctoSL7dX2UKGgGaAloD0MIZY9QM6QuV0CUhpRSlGgVTegDaBZHQITfS94/u9h1fZQoaAZoCWgPQwiOIQA49v1fQJSGlFKUaBVN6ANoFkdAhO2LBbfP5nV9lChoBmgJaA9DCItrfCb7/15AlIaUUpRoFU3oA2gWR0CFEwgFHJ9zdX2UKGgGaAloD0MIQs2QKoqoW0CUhpRSlGgVTegDaBZHQIUZBmXgLql1fZQoaAZoCWgPQwjye5v+7IlYQJSGlFKUaBVN6ANoFkdAhSAxKpT/AHV9lChoBmgJaA9DCMRCrWnerFNAlIaUUpRoFU3oA2gWR0CFOr/DtPYWdX2UKGgGaAloD0MI/nvw2qWDXkCUhpRSlGgVTegDaBZHQIU7fCqIacZ1fZQoaAZoCWgPQwgSMSWS6LNYQJSGlFKUaBVN6ANoFkdAhTyZLh73PHV9lChoBmgJaA9DCJMcsKtJdGNAlIaUUpRoFU3oA2gWR0CFPtHCoCMhdX2UKGgGaAloD0MIaCWt+IbJYECUhpRSlGgVTegDaBZHQIU/oxWT5ft1fZQoaAZoCWgPQwjqruyCwW1UQJSGlFKUaBVN6ANoFkdAhUXU47zTW3V9lChoBmgJaA9DCGB4JclzLFtAlIaUUpRoFU3oA2gWR0CFSVJK8L8adX2UKGgGaAloD0MIY3yYvWzRXECUhpRSlGgVTegDaBZHQIV2VKkEcKh1fZQoaAZoCWgPQwj+8PPfgyBaQJSGlFKUaBVN6ANoFkdAhYFEDQqqfnV9lChoBmgJaA9DCMcrED2pFmFAlIaUUpRoFU3oA2gWR0CFgUwevIOpdX2UKGgGaAloD0MI+BkXDgRMZUCUhpRSlGgVTegDaBZHQIWD1QQ+UyJ1fZQoaAZoCWgPQwgf14aKcUVaQJSGlFKUaBVN6ANoFkdAhYnFhPTG53V9lChoBmgJaA9DCLcIjPUN/llAlIaUUpRoFU3oA2gWR0CFmfOObRWtdX2UKGgGaAloD0MIK/cCs0JaYECUhpRSlGgVTegDaBZHQIXCveizsyB1fZQoaAZoCWgPQwiQhegQONxbQJSGlFKUaBVN6ANoFkdAhckC1Z1V53V9lChoBmgJaA9DCDBl4ICWTmFAlIaUUpRoFU3oA2gWR0CF0E2AoXsPdX2UKGgGaAloD0MIisqGNZUMYUCUhpRSlGgVTegDaBZHQIXrmWUr08N1fZQoaAZoCWgPQwgPZD21eoRhQJSGlFKUaBVN6ANoFkdAhexapYLb6HV9lChoBmgJaA9DCHzRHi+kQ1xAlIaUUpRoFU3oA2gWR0CF7YH4XXRPdX2UKGgGaAloD0MIDogQV858XUCUhpRSlGgVTegDaBZHQIXvpwVCXyB1fZQoaAZoCWgPQwgqHhfVImVYQJSGlFKUaBVN6ANoFkdAhfBjdgv12HV9lChoBmgJaA9DCOM0RBX+aElAlIaUUpRoFU0+AWgWR0CF9jtF8XvZdX2UKGgGaAloD0MIuoEC7+S7WkCUhpRSlGgVTegDaBZHQIX2tc6eXiR1fZQoaAZoCWgPQwie8BKcesxgQJSGlFKUaBVN6ANoFkdAhfnz9CNS63VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:399c367194b5ec5e4928f4c6454f510cb29904e7c6efa349c8245eeb4844f44a
|
3 |
+
size 144155
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc845385830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc8453858c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc845385950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc8453859e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc845385a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc845385b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc845385b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc845385c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc845385cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc845385d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc845385dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc8453d7570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653042950.159827,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGrKgPizQjz+O/ms+uiycvtFhsD7ll8i9AAAAAAAAAAD43rK+HeQrP5kyOj0Wpna+bfKbu1Xx6b0AAAAAAAAAAGYhMr72UTs7ZU/Wu2FoKjnPBvq8K88ZugAAgD8AAIA/LVV3PqLYAT+HeTi+kc43vo/01TxNmAC+AAAAAAAAAACax2c83MsfP+xHxLwRcSm+4Y00PZYTibwAAAAAAAAAAACoaTv2XC66YQOcvONEo7bwupg6S1UUNgAAgD8AAIA/pnWpvd3xjz/m1+o8R+VMvlpCcTxJs7s9AAAAAAAAAACqJ4Q+pLg8PG1yWznXamc3HrWzPd1mhbgAAIA/AACAPwAs1D0pFCe63WLvuwiYgTaBMKG7RtLttQAAgD8AAIA/zcJsPMbZgD8t+CI9fNKlvvvGLT7FYe88AAAAAAAAAACalaU9XE9iugzAA7zsrQO2A/Ybu5YybDUAAIA/AACAP4A1zj0mjCU/amyCvVBcDb73dAO9JRORPQAAAAAAAAAA5oc4vR919LldEiu6182CtW2FhjtHLEY5AACAPwAAgD9aLpg9990lP6CsjzxRQD2+Y4uYvPfHyj0AAAAAAAAAADNKZj2PbkS6e5ddN3zdDTUcx5C6/9SAtgAAgD8AAIA/mitVvMNheboysRQ63h5ENf7kDzpy5Sy5AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIacNhaeD1RcCUhpRSlIwBbJRNKAGMAXSUR0CCQvzEJjUedX2UKGgGaAloD0MIwEF79fHQBkCUhpRSlGgVTUwBaBZHQIJEBdt2s7x1fZQoaAZoCWgPQwiRYRVvZC4wQJSGlFKUaBVNOgFoFkdAglIizkZJkHV9lChoBmgJaA9DCL8Qct7/4l5AlIaUUpRoFU3oA2gWR0CCXcMsH0K7dX2UKGgGaAloD0MIpdsSueDIXUCUhpRSlGgVTegDaBZHQIJlddPci4d1fZQoaAZoCWgPQwgzbf/KSpJQQJSGlFKUaBVN6ANoFkdAgmna7VawEHV9lChoBmgJaA9DCJuRQe4iol5AlIaUUpRoFU3oA2gWR0CCcCygwoLHdX2UKGgGaAloD0MIwhiRKLT0I0CUhpRSlGgVTegDaBZHQIJykxGlQ/J1fZQoaAZoCWgPQwiJJeXuc55RQJSGlFKUaBVN6ANoFkdAgoI4A0bcXXV9lChoBmgJaA9DCFx1HaqptGBAlIaUUpRoFU3oA2gWR0CCiMJTl1bJdX2UKGgGaAloD0MI1/fhIKF9YkCUhpRSlGgVTegDaBZHQIKJ4hbGFSN1fZQoaAZoCWgPQwi/KaxUUFhaQJSGlFKUaBVN6ANoFkdAgoqqm8/Uv3V9lChoBmgJaA9DCAxAo3Tp5GNAlIaUUpRoFU3oA2gWR0CCjLnq3VkMdX2UKGgGaAloD0MIccrcfCMUVkCUhpRSlGgVTegDaBZHQIKMwAuIyj51fZQoaAZoCWgPQwimRX2SO7NVQJSGlFKUaBVN6ANoFkdAgrvAAAAAAHV9lChoBmgJaA9DCFD+7h019kDAlIaUUpRoFUvqaBZHQILP4JeE7GN1fZQoaAZoCWgPQwhxIY/gRhZXQJSGlFKUaBVN6ANoFkdAgtqqP4mCy3V9lChoBmgJaA9DCAe139oJ2WFAlIaUUpRoFU3oA2gWR0CC7YRSxZ+ydX2UKGgGaAloD0MIQwHbwYiNXECUhpRSlGgVTegDaBZHQILuvPZ7HAB1fZQoaAZoCWgPQwg9t9CVCOBIQJSGlFKUaBVN6ANoFkdAgv82attALXV9lChoBmgJaA9DCDRlpx9ULGJAlIaUUpRoFU3oA2gWR0CDC0VfNRm9dX2UKGgGaAloD0MIZVBtcCImNUCUhpRSlGgVS/1oFkdAgxLMwUQCjnV9lChoBmgJaA9DCIQtdvusw11AlIaUUpRoFU3oA2gWR0CDE6ANoakzdX2UKGgGaAloD0MIbY/ecB+ZWECUhpRSlGgVTegDaBZHQIMYHdEb5uZ1fZQoaAZoCWgPQwheSIeHsEhgQJSGlFKUaBVN6ANoFkdAgx4bSApazXV9lChoBmgJaA9DCFzGTQ00yVpAlIaUUpRoFU3oA2gWR0CDIHDu0CzUdX2UKGgGaAloD0MIjXqIRnfqU0CUhpRSlGgVTegDaBZHQIMvygPEsJ91fZQoaAZoCWgPQwiQZ5dvfWViQJSGlFKUaBVN6ANoFkdAgzWxyn1nNHV9lChoBmgJaA9DCGiVmdL6O1VAlIaUUpRoFU3oA2gWR0CDNrVktmL+dX2UKGgGaAloD0MIgCkDB7RZWECUhpRSlGgVTegDaBZHQIM3Zkf9xZN1fZQoaAZoCWgPQwgR/G8lO1liQJSGlFKUaBVN6ANoFkdAgzk0H6dlNHV9lChoBmgJaA9DCP1K58Ozkk9AlIaUUpRoFU3oA2gWR0CDZ+z7di2EdX2UKGgGaAloD0MIbsST3cy1XkCUhpRSlGgVTegDaBZHQIN7Vy925hB1fZQoaAZoCWgPQwjaklURbj4/QJSGlFKUaBVNEQFoFkdAg341O0svqXV9lChoBmgJaA9DCGXCL/Vz+2FAlIaUUpRoFU3oA2gWR0CDhOAsCkoGdX2UKGgGaAloD0MIKzQQy2bdW0CUhpRSlGgVTegDaBZHQIOV0iyIHkd1fZQoaAZoCWgPQwhWtg95y3NgQJSGlFKUaBVN6ANoFkdAg6a/vOQhfXV9lChoBmgJaA9DCILJjSJrLmFAlIaUUpRoFU3oA2gWR0CDswFhXr+pdX2UKGgGaAloD0MIX5uNlZjtRECUhpRSlGgVTegDaBZHQIO6fgpBomJ1fZQoaAZoCWgPQwhC7Eyh81pZQJSGlFKUaBVN6ANoFkdAg7tV81Gb1HV9lChoBmgJaA9DCHfZrzvdGlpAlIaUUpRoFU3oA2gWR0CDv6hWYF7ldX2UKGgGaAloD0MID4EjgQadWkCUhpRSlGgVTegDaBZHQIPFk2LpA2R1fZQoaAZoCWgPQwipT3KHTXZRQJSGlFKUaBVN6ANoFkdAg8fYNI9TxXV9lChoBmgJaA9DCEiKyLCK8VxAlIaUUpRoFU3oA2gWR0CD1pgtOEdvdX2UKGgGaAloD0MIsMqFyr9OPECUhpRSlGgVTUcBaBZHQIPcLt3OfNB1fZQoaAZoCWgPQwhj0AmhgyZVQJSGlFKUaBVN6ANoFkdAg9zNAs052nV9lChoBmgJaA9DCHr+tFEdQWBAlIaUUpRoFU3oA2gWR0CD3b0/W1+idX2UKGgGaAloD0MI3LqbpzqEEcCUhpRSlGgVTSoBaBZHQIPfoo1DSgJ1fZQoaAZoCWgPQwiYpDLFHA5YQJSGlFKUaBVN6ANoFkdAg+BNeUpuuXV9lChoBmgJaA9DCBGMg0vHOmZAlIaUUpRoFU33AWgWR0CD5hkuHvc8dX2UKGgGaAloD0MITMecZ+z7VkCUhpRSlGgVTegDaBZHQIQPB2OhkAh1fZQoaAZoCWgPQwjTE5Z4QIksQJSGlFKUaBVNWgFoFkdAhBXgOavzOHV9lChoBmgJaA9DCDvgumJGv15AlIaUUpRoFU3oA2gWR0CEIMMaS9uhdX2UKGgGaAloD0MI4uXpXFEqJECUhpRSlGgVTTkBaBZHQIQgyQT238Z1fZQoaAZoCWgPQwgAOPbsucBWQJSGlFKUaBVN6ANoFkdAhCNIVVPva3V9lChoBmgJaA9DCPJetTLh4WRAlIaUUpRoFU3oA2gWR0CEKQ68xsVMdX2UKGgGaAloD0MILQYP075hYECUhpRSlGgVTegDaBZHQIQ5bm8ujAV1fZQoaAZoCWgPQwiqu7ILBixfQJSGlFKUaBVN6ANoFkdAhGLgIyCWeHV9lChoBmgJaA9DCOj6PhwkeVdAlIaUUpRoFU3oA2gWR0CEaZ+NtIkJdX2UKGgGaAloD0MIteIbCh8jYECUhpRSlGgVTegDaBZHQIRxqrtE5Qx1fZQoaAZoCWgPQwiMvoI0YzxeQJSGlFKUaBVN6ANoFkdAhJAY0VJti3V9lChoBmgJaA9DCG/1nPS+d19AlIaUUpRoFU3oA2gWR0CEkOEB8x9HdX2UKGgGaAloD0MIuDzWjAyaW0CUhpRSlGgVTegDaBZHQISSGJBPbfx1fZQoaAZoCWgPQwiZEd4ehO5cQJSGlFKUaBVN6ANoFkdAhJSIQ4CIUXV9lChoBmgJaA9DCOwTQDGy7FtAlIaUUpRoFU3oA2gWR0CElVmapgkUdX2UKGgGaAloD0MI5UF6ipxcYUCUhpRSlGgVTegDaBZHQIScDJU5uIh1fZQoaAZoCWgPQwhf0a3X9PNfQJSGlFKUaBVN6ANoFkdAhJ+RREWqLnV9lChoBmgJaA9DCNpWs874p1VAlIaUUpRoFU3oA2gWR0CEzHHjp9qldX2UKGgGaAloD0MIjbgANMpmYECUhpRSlGgVTegDaBZHQITXKtA9mpV1fZQoaAZoCWgPQwha8KKvINdeQJSGlFKUaBVN6ANoFkdAhNcyGahHsnV9lChoBmgJaA9DCKPMBplkYFlAlIaUUpRoFU3oA2gWR0CE2cctoSL7dX2UKGgGaAloD0MIZY9QM6QuV0CUhpRSlGgVTegDaBZHQITfS94/u9h1fZQoaAZoCWgPQwiOIQA49v1fQJSGlFKUaBVN6ANoFkdAhO2LBbfP5nV9lChoBmgJaA9DCItrfCb7/15AlIaUUpRoFU3oA2gWR0CFEwgFHJ9zdX2UKGgGaAloD0MIQs2QKoqoW0CUhpRSlGgVTegDaBZHQIUZBmXgLql1fZQoaAZoCWgPQwjye5v+7IlYQJSGlFKUaBVN6ANoFkdAhSAxKpT/AHV9lChoBmgJaA9DCMRCrWnerFNAlIaUUpRoFU3oA2gWR0CFOr/DtPYWdX2UKGgGaAloD0MI/nvw2qWDXkCUhpRSlGgVTegDaBZHQIU7fCqIacZ1fZQoaAZoCWgPQwgSMSWS6LNYQJSGlFKUaBVN6ANoFkdAhTyZLh73PHV9lChoBmgJaA9DCJMcsKtJdGNAlIaUUpRoFU3oA2gWR0CFPtHCoCMhdX2UKGgGaAloD0MIaCWt+IbJYECUhpRSlGgVTegDaBZHQIU/oxWT5ft1fZQoaAZoCWgPQwjqruyCwW1UQJSGlFKUaBVN6ANoFkdAhUXU47zTW3V9lChoBmgJaA9DCGB4JclzLFtAlIaUUpRoFU3oA2gWR0CFSVJK8L8adX2UKGgGaAloD0MIY3yYvWzRXECUhpRSlGgVTegDaBZHQIV2VKkEcKh1fZQoaAZoCWgPQwj+8PPfgyBaQJSGlFKUaBVN6ANoFkdAhYFEDQqqfnV9lChoBmgJaA9DCMcrED2pFmFAlIaUUpRoFU3oA2gWR0CFgUwevIOpdX2UKGgGaAloD0MI+BkXDgRMZUCUhpRSlGgVTegDaBZHQIWD1QQ+UyJ1fZQoaAZoCWgPQwgf14aKcUVaQJSGlFKUaBVN6ANoFkdAhYnFhPTG53V9lChoBmgJaA9DCLcIjPUN/llAlIaUUpRoFU3oA2gWR0CFmfOObRWtdX2UKGgGaAloD0MIK/cCs0JaYECUhpRSlGgVTegDaBZHQIXCveizsyB1fZQoaAZoCWgPQwiQhegQONxbQJSGlFKUaBVN6ANoFkdAhckC1Z1V53V9lChoBmgJaA9DCDBl4ICWTmFAlIaUUpRoFU3oA2gWR0CF0E2AoXsPdX2UKGgGaAloD0MIisqGNZUMYUCUhpRSlGgVTegDaBZHQIXrmWUr08N1fZQoaAZoCWgPQwgPZD21eoRhQJSGlFKUaBVN6ANoFkdAhexapYLb6HV9lChoBmgJaA9DCHzRHi+kQ1xAlIaUUpRoFU3oA2gWR0CF7YH4XXRPdX2UKGgGaAloD0MIDogQV858XUCUhpRSlGgVTegDaBZHQIXvpwVCXyB1fZQoaAZoCWgPQwgqHhfVImVYQJSGlFKUaBVN6ANoFkdAhfBjdgv12HV9lChoBmgJaA9DCOM0RBX+aElAlIaUUpRoFU0+AWgWR0CF9jtF8XvZdX2UKGgGaAloD0MIuoEC7+S7WkCUhpRSlGgVTegDaBZHQIX2tc6eXiR1fZQoaAZoCWgPQwie8BKcesxgQJSGlFKUaBVN6ANoFkdAhfnz9CNS63VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dceb08f7cbb32692714ad5f3e760879285a4c578a41d8b96648ea69e5c68547a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1620c7b9ace2289ebd7ebb42d4ebc40dc2db6f0819c11b7603719d096fb2401d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:715bdc8e7b89a1db5b77607185d647e04a27d0832eae78462ad295e4adee6ec7
|
3 |
+
size 258799
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 204.77257009789994, "std_reward": 22.363823530757617, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T10:49:15.962548"}
|