Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 278.47 +/- 21.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a928313a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a92831440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a928314e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a92831580>", "_build": "<function ActorCriticPolicy._build at 0x7f1a92831620>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a928316c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a92831760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a92831800>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a928318a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a92831940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a928319e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a92831a80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a92999900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739585787270975717, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2gwLzDHQm6wUlCO9ANXTgKB/K6Cm/puQAAAAAAAAAAgL9JvjN8BT+6uvA9GwXKvpHoob0dXAk+AAAAAAAAAADmnAm9XINqur3mZLLq7Qsx+X4OuVoHADMAAIA/AACAPwDmST2eaZg/oSS8PWWW2b6OKiw+g1V6PQAAAAAAAAAAQCWGvQovSj/yR+e9o2bfvpGFxLu6mvE8AAAAAAAAAAAgI2c+eyN4P0c3DT+S2+2+U6OAPo5ckj4AAAAAAAAAAGYUlLyYfo0+3k82vk70vL5HHQG+Wx97vQAAAAAAAAAAZmL4u/bcJrrtFfM7XhYvs5M0jjt7Qk6zAAAAAAAAAABtvxE+kL4eP/bcqr5LtPm+mGtGvUdjJr4AAAAAAAAAAGZg5z2JvQM/QrnovXRavL7/kxU6Ou0WvQAAAAAAAAAAgF41vis5Lj9tSzm+gtjvvnGuOb4NuVQ9AAAAAAAAAACTtkW+9jtCPzOYGL50LhO/n9dgvpUd2D0AAAAAAAAAAJoZJzzZCgA+Etb2PJYZlb4HlzS8QdavvQAAAAAAAAAAzcqxPGSPiz/YJ1k98Zb5vsLz7T01lws9AAAAAAAAAADNys88pIdEu6CdIjwgyp08OEqjPFzShr0AAIA/AACAPwBINDxXXKo/BA2fPQCm4r5XrH0980INPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL05wsGxD+MAWyUS+SMAXSUR0CctDefqX4TdX2UKGgGR0BzdSElE7W/aAdL+2gIR0CctEabF0gbdX2UKGgGR0BvAibayrxRaAdL9GgIR0CctKSowVTKdX2UKGgGR0BxJNEWqLjxaAdL8GgIR0CctMTr3TNMdX2UKGgGR0BzE0WHk92YaAdL/WgIR0CctMMvh60IdX2UKGgGR0Bwnr8P4EfUaAdL7GgIR0CctMhcJMQFdX2UKGgGR0ByTuYZ2pyZaAdL02gIR0CctOLyMDOkdX2UKGgGR0ByAkTzundgaAdL0WgIR0CctQBX0XgtdX2UKGgGR0BxccNQTEiuaAdL5GgIR0CctSbfgrH3dX2UKGgGR0Bx6fSmZVn3aAdLzWgIR0CctYD0UXYUdX2UKGgGR0BzSGx5cC5maAdL92gIR0CcteblzU7TdX2UKGgGR0Bwk+u6mO2iaAdL/WgIR0CctuD+R5kcdX2UKGgGR0BocvCCSRr8aAdNBQNoCEdAnLgJEx7AtXV9lChoBkdARKNUp/gBLmgHS8JoCEdAnLjthZyMk3V9lChoBkdAcsT+jdpItmgHS+ZoCEdAnLl96LOzIHV9lChoBkdAc/k3OObRW2gHTSEBaAhHQJy5pORDCxh1fZQoaAZHQHJpI6S1Vo9oB0vraAhHQJy59NUOuq51fZQoaAZHQHFHzOPeYUpoB0vaaAhHQJy6Aq5LAYZ1fZQoaAZHQG++Ogg5imVoB0vnaAhHQJy6ONlyzX11fZQoaAZHQHD0Vkc0cfhoB0voaAhHQJy6nLJSzgN1fZQoaAZHQHGkFu76Hj9oB00WAWgIR0CcuqYYR/VidX2UKGgGR0BxjCm8/UvxaAdL9mgIR0CcusFQVKwqdX2UKGgGR0BzjFMURFqjaAdL9mgIR0CcuugDA8B/dX2UKGgGR0BxHul0o0AMaAdNBQFoCEdAnLs7L+xW1nV9lChoBkdAcUlxhUipvWgHS/poCEdAnLtc5wOvuHV9lChoBkdAcg22criEQGgHS/toCEdAnLvN7ngYQHV9lChoBkdAcPfvCMxXXGgHS/doCEdAnLwtXgccVHV9lChoBkdAcZHFQl8gIWgHS+1oCEdAnL0ZCOWBz3V9lChoBkdAbtYQK8cuJ2gHS+doCEdAnL5YGIKtxXV9lChoBkdAcgRrkKeCkGgHS9FoCEdAnNJEPDpC8nV9lChoBkdAcI6hl18stmgHS/FoCEdAnNJpX+2mYXV9lChoBkdAccMq6OHWSWgHS8toCEdAnNJzrqt5lnV9lChoBkdAcn03u/k/8mgHS+doCEdAnNK4+bExZnV9lChoBkdAbvVHPu5SWWgHS+doCEdAnNMs1CPZI3V9lChoBkdAcnXEUTL4e2gHS9poCEdAnNOA2ETQFHV9lChoBkdAcE+5I6KceGgHS+toCEdAnNOIOlO45XV9lChoBkdAczbfpljEvWgHS91oCEdAnNOlWwNb1XV9lChoBkdAcD5qgAZKnWgHS9NoCEdAnNPFQ66renV9lChoBkdAcj8su3+db2gHS+loCEdAnNPS/sVtXXV9lChoBkdAcNVkDZDiO2gHS+loCEdAnNQAGfPHDXV9lChoBkdAcI00Re1KG2gHS+RoCEdAnNQ3zYmLL3V9lChoBkdAb320vXbudGgHS+hoCEdAnNSgvQF9r3V9lChoBkdAcoib4Ju2qmgHS+toCEdAnNT3FxXGO3V9lChoBkdAceeloUSIxmgHS+9oCEdAnNW+gDifhHV9lChoBkdASm+sPrfLtGgHS65oCEdAnNZHxSYPXnV9lChoBkdAcXahgVoHs2gHS+5oCEdAnNav5YYBNnV9lChoBkdAcOsRiPQv6GgHS8doCEdAnNej2FnIyXV9lChoBkdAcYvKsuFpPGgHS+toCEdAnNfPBN21UnV9lChoBkdAcSUzguRLb2gHS/poCEdAnNgLADaGpXV9lChoBkdAcCSWMju8b2gHS/BoCEdAnNg5Gz8gp3V9lChoBkdAcmiXgccU/WgHS9VoCEdAnNhUVnEl3XV9lChoBkdAcNmATZg5R2gHS9xoCEdAnNier2g3+HV9lChoBkdAc6IQIldC3WgHS+loCEdAnNjKS9ugpXV9lChoBkdAcjb+g13t8mgHS+BoCEdAnNjl+I/JNnV9lChoBkdAcWUtW+49YGgHS85oCEdAnNjvHPu5SXV9lChoBkdAby666reZX2gHS+ZoCEdAnNj5bQkX13V9lChoBkdAcZzsPJ7swGgHS8poCEdAnNk+WBz3iHV9lChoBkdAcv9b83uNP2gHS+poCEdAnNlEwWWQfnV9lChoBkdAcP/eBg/kemgHS9ZoCEdAnNnC++M6zXV9lChoBkdAcVvQKrq+rWgHS8hoCEdAnNq6tga3qnV9lChoBkdAcxjV81Gb1GgHS+JoCEdAnNrG2G7Bf3V9lChoBkdAcHHmJ3xFzGgHS+BoCEdAnNuXdj5KvnV9lChoBkdASnkuvllsg2gHS6NoCEdAnNwnmA9V3nV9lChoBkdAc6W1uBMBZWgHS81oCEdAnNxvBFd9lXV9lChoBkdAb/Pns9jgAWgHS8xoCEdAnNyXVkMCtHV9lChoBkdAb2z0xM36ymgHS+FoCEdAnN00PpY9xXV9lChoBkdAbt7CZWq95GgHS/9oCEdAnN1wD/2kBXV9lChoBkdAciJQQL/jsGgHS9NoCEdAnN2LHU+cIHV9lChoBkdAcPt+fywwCmgHS8xoCEdAnN22gezUqnV9lChoBkdAcbab5dnkDWgHS+toCEdAnN2/xtpEhXV9lChoBkdAcaE7iyY5UGgHTRoBaAhHQJzd8ABDG991fZQoaAZHQG8i+Y2Kl55oB0vdaAhHQJzeHeYUnG91fZQoaAZHQHCTsiB5HExoB0v2aAhHQJzePxvvSc91fZQoaAZHQHDLoikfs/poB00JAWgIR0Cc3qkFOfukdX2UKGgGR0BzFrB42S+yaAdL6GgIR0Cc3u1UEPlNdX2UKGgGR0BxssTnJT2naAdNBAFoCEdAnOCmqo60Y3V9lChoBkdAcnhrPdEb52gHS+VoCEdAnODUAksz23V9lChoBkdAcCSkJ8fFJmgHS9doCEdAnOFevhZQpHV9lChoBkdAcHSqoZQ53mgHTQYBaAhHQJziYG1QZXN1fZQoaAZHQHFEuSbH6uZoB0v4aAhHQJzifCgsbvR1fZQoaAZHQHFinWOIZZVoB0vMaAhHQJzi1hrnDBN1fZQoaAZHQHDYEFwDNhVoB0vFaAhHQJzi5j4Hoox1fZQoaAZHQHLZN7v5P/JoB0vmaAhHQJzi/y7PIGR1fZQoaAZHQHImrHU+cH5oB0vgaAhHQJzjLNA1Nxl1fZQoaAZHQHFTr52yLQ5oB0v5aAhHQJzjQD4gzP91fZQoaAZHQHNwk5hjOLRoB0vraAhHQJzjPC9AX2x1fZQoaAZHQG26JrLyMDRoB0v5aAhHQJzjsrNGEwp1fZQoaAZHQHDYNBv73wloB0vuaAhHQJzk2YtxuKp1fZQoaAZHQHE93tF8XvZoB00DAWgIR0Cc5RR8MNMHdX2UKGgGR0BytPaqS5iFaAdL2mgIR0Cc5lxFAmiQdX2UKGgGR0BybLUZvUBoaAdLzmgIR0Cc5tPUrkKedX2UKGgGR0ByFvgccU/OaAdL7mgIR0Cc5yq4pc5bdX2UKGgGR0BQ9UPlMh5gaAdLp2gIR0Cc50AtnPE9dX2UKGgGR0Bye2ZF5OafaAdL22gIR0Cc6D83dbgTdX2UKGgGR0Bvy/l+3H7xaAdL2mgIR0Cc6FOinHeadX2UKGgGR0BRhqpYLb5/aAdLsWgIR0Cc6H6Zpi7TdX2UKGgGR0BwXOuaF23baAdL1WgIR0Cc6PK+SKWLdX2UKGgGR0BwNgDB/I8yaAdL3mgIR0Cc6R6l+EytdX2UKGgGR0BxNLaEi+tbaAdL32gIR0Cc6TiQkonbdX2UKGgGR0Bxk05U96kZaAdL+GgIR0Cc6aIPK+zudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:962a309f81a9e67a3f5a46846b7a0b5bfe055e064de405f6692a61ed1a0983a2
|
3 |
+
size 148012
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a928313a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a92831440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a928314e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a92831580>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a92831620>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a928316c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a92831760>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a92831800>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a928318a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a92831940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a928319e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a92831a80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1a92999900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1739585787270975717,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2gwLzDHQm6wUlCO9ANXTgKB/K6Cm/puQAAAAAAAAAAgL9JvjN8BT+6uvA9GwXKvpHoob0dXAk+AAAAAAAAAADmnAm9XINqur3mZLLq7Qsx+X4OuVoHADMAAIA/AACAPwDmST2eaZg/oSS8PWWW2b6OKiw+g1V6PQAAAAAAAAAAQCWGvQovSj/yR+e9o2bfvpGFxLu6mvE8AAAAAAAAAAAgI2c+eyN4P0c3DT+S2+2+U6OAPo5ckj4AAAAAAAAAAGYUlLyYfo0+3k82vk70vL5HHQG+Wx97vQAAAAAAAAAAZmL4u/bcJrrtFfM7XhYvs5M0jjt7Qk6zAAAAAAAAAABtvxE+kL4eP/bcqr5LtPm+mGtGvUdjJr4AAAAAAAAAAGZg5z2JvQM/QrnovXRavL7/kxU6Ou0WvQAAAAAAAAAAgF41vis5Lj9tSzm+gtjvvnGuOb4NuVQ9AAAAAAAAAACTtkW+9jtCPzOYGL50LhO/n9dgvpUd2D0AAAAAAAAAAJoZJzzZCgA+Etb2PJYZlb4HlzS8QdavvQAAAAAAAAAAzcqxPGSPiz/YJ1k98Zb5vsLz7T01lws9AAAAAAAAAADNys88pIdEu6CdIjwgyp08OEqjPFzShr0AAIA/AACAPwBINDxXXKo/BA2fPQCm4r5XrH0980INPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL05wsGxD+MAWyUS+SMAXSUR0CctDefqX4TdX2UKGgGR0BzdSElE7W/aAdL+2gIR0CctEabF0gbdX2UKGgGR0BvAibayrxRaAdL9GgIR0CctKSowVTKdX2UKGgGR0BxJNEWqLjxaAdL8GgIR0CctMTr3TNMdX2UKGgGR0BzE0WHk92YaAdL/WgIR0CctMMvh60IdX2UKGgGR0Bwnr8P4EfUaAdL7GgIR0CctMhcJMQFdX2UKGgGR0ByTuYZ2pyZaAdL02gIR0CctOLyMDOkdX2UKGgGR0ByAkTzundgaAdL0WgIR0CctQBX0XgtdX2UKGgGR0BxccNQTEiuaAdL5GgIR0CctSbfgrH3dX2UKGgGR0Bx6fSmZVn3aAdLzWgIR0CctYD0UXYUdX2UKGgGR0BzSGx5cC5maAdL92gIR0CcteblzU7TdX2UKGgGR0Bwk+u6mO2iaAdL/WgIR0CctuD+R5kcdX2UKGgGR0BocvCCSRr8aAdNBQNoCEdAnLgJEx7AtXV9lChoBkdARKNUp/gBLmgHS8JoCEdAnLjthZyMk3V9lChoBkdAcsT+jdpItmgHS+ZoCEdAnLl96LOzIHV9lChoBkdAc/k3OObRW2gHTSEBaAhHQJy5pORDCxh1fZQoaAZHQHJpI6S1Vo9oB0vraAhHQJy59NUOuq51fZQoaAZHQHFHzOPeYUpoB0vaaAhHQJy6Aq5LAYZ1fZQoaAZHQG++Ogg5imVoB0vnaAhHQJy6ONlyzX11fZQoaAZHQHD0Vkc0cfhoB0voaAhHQJy6nLJSzgN1fZQoaAZHQHGkFu76Hj9oB00WAWgIR0CcuqYYR/VidX2UKGgGR0BxjCm8/UvxaAdL9mgIR0CcusFQVKwqdX2UKGgGR0BzjFMURFqjaAdL9mgIR0CcuugDA8B/dX2UKGgGR0BxHul0o0AMaAdNBQFoCEdAnLs7L+xW1nV9lChoBkdAcUlxhUipvWgHS/poCEdAnLtc5wOvuHV9lChoBkdAcg22criEQGgHS/toCEdAnLvN7ngYQHV9lChoBkdAcPfvCMxXXGgHS/doCEdAnLwtXgccVHV9lChoBkdAcZHFQl8gIWgHS+1oCEdAnL0ZCOWBz3V9lChoBkdAbtYQK8cuJ2gHS+doCEdAnL5YGIKtxXV9lChoBkdAcgRrkKeCkGgHS9FoCEdAnNJEPDpC8nV9lChoBkdAcI6hl18stmgHS/FoCEdAnNJpX+2mYXV9lChoBkdAccMq6OHWSWgHS8toCEdAnNJzrqt5lnV9lChoBkdAcn03u/k/8mgHS+doCEdAnNK4+bExZnV9lChoBkdAbvVHPu5SWWgHS+doCEdAnNMs1CPZI3V9lChoBkdAcnXEUTL4e2gHS9poCEdAnNOA2ETQFHV9lChoBkdAcE+5I6KceGgHS+toCEdAnNOIOlO45XV9lChoBkdAczbfpljEvWgHS91oCEdAnNOlWwNb1XV9lChoBkdAcD5qgAZKnWgHS9NoCEdAnNPFQ66renV9lChoBkdAcj8su3+db2gHS+loCEdAnNPS/sVtXXV9lChoBkdAcNVkDZDiO2gHS+loCEdAnNQAGfPHDXV9lChoBkdAcI00Re1KG2gHS+RoCEdAnNQ3zYmLL3V9lChoBkdAb320vXbudGgHS+hoCEdAnNSgvQF9r3V9lChoBkdAcoib4Ju2qmgHS+toCEdAnNT3FxXGO3V9lChoBkdAceeloUSIxmgHS+9oCEdAnNW+gDifhHV9lChoBkdASm+sPrfLtGgHS65oCEdAnNZHxSYPXnV9lChoBkdAcXahgVoHs2gHS+5oCEdAnNav5YYBNnV9lChoBkdAcOsRiPQv6GgHS8doCEdAnNej2FnIyXV9lChoBkdAcYvKsuFpPGgHS+toCEdAnNfPBN21UnV9lChoBkdAcSUzguRLb2gHS/poCEdAnNgLADaGpXV9lChoBkdAcCSWMju8b2gHS/BoCEdAnNg5Gz8gp3V9lChoBkdAcmiXgccU/WgHS9VoCEdAnNhUVnEl3XV9lChoBkdAcNmATZg5R2gHS9xoCEdAnNier2g3+HV9lChoBkdAc6IQIldC3WgHS+loCEdAnNjKS9ugpXV9lChoBkdAcjb+g13t8mgHS+BoCEdAnNjl+I/JNnV9lChoBkdAcWUtW+49YGgHS85oCEdAnNjvHPu5SXV9lChoBkdAby666reZX2gHS+ZoCEdAnNj5bQkX13V9lChoBkdAcZzsPJ7swGgHS8poCEdAnNk+WBz3iHV9lChoBkdAcv9b83uNP2gHS+poCEdAnNlEwWWQfnV9lChoBkdAcP/eBg/kemgHS9ZoCEdAnNnC++M6zXV9lChoBkdAcVvQKrq+rWgHS8hoCEdAnNq6tga3qnV9lChoBkdAcxjV81Gb1GgHS+JoCEdAnNrG2G7Bf3V9lChoBkdAcHHmJ3xFzGgHS+BoCEdAnNuXdj5KvnV9lChoBkdASnkuvllsg2gHS6NoCEdAnNwnmA9V3nV9lChoBkdAc6W1uBMBZWgHS81oCEdAnNxvBFd9lXV9lChoBkdAb/Pns9jgAWgHS8xoCEdAnNyXVkMCtHV9lChoBkdAb2z0xM36ymgHS+FoCEdAnN00PpY9xXV9lChoBkdAbt7CZWq95GgHS/9oCEdAnN1wD/2kBXV9lChoBkdAciJQQL/jsGgHS9NoCEdAnN2LHU+cIHV9lChoBkdAcPt+fywwCmgHS8xoCEdAnN22gezUqnV9lChoBkdAcbab5dnkDWgHS+toCEdAnN2/xtpEhXV9lChoBkdAcaE7iyY5UGgHTRoBaAhHQJzd8ABDG991fZQoaAZHQG8i+Y2Kl55oB0vdaAhHQJzeHeYUnG91fZQoaAZHQHCTsiB5HExoB0v2aAhHQJzePxvvSc91fZQoaAZHQHDLoikfs/poB00JAWgIR0Cc3qkFOfukdX2UKGgGR0BzFrB42S+yaAdL6GgIR0Cc3u1UEPlNdX2UKGgGR0BxssTnJT2naAdNBAFoCEdAnOCmqo60Y3V9lChoBkdAcnhrPdEb52gHS+VoCEdAnODUAksz23V9lChoBkdAcCSkJ8fFJmgHS9doCEdAnOFevhZQpHV9lChoBkdAcHSqoZQ53mgHTQYBaAhHQJziYG1QZXN1fZQoaAZHQHFEuSbH6uZoB0v4aAhHQJzifCgsbvR1fZQoaAZHQHFinWOIZZVoB0vMaAhHQJzi1hrnDBN1fZQoaAZHQHDYEFwDNhVoB0vFaAhHQJzi5j4Hoox1fZQoaAZHQHLZN7v5P/JoB0vmaAhHQJzi/y7PIGR1fZQoaAZHQHImrHU+cH5oB0vgaAhHQJzjLNA1Nxl1fZQoaAZHQHFTr52yLQ5oB0v5aAhHQJzjQD4gzP91fZQoaAZHQHNwk5hjOLRoB0vraAhHQJzjPC9AX2x1fZQoaAZHQG26JrLyMDRoB0v5aAhHQJzjsrNGEwp1fZQoaAZHQHDYNBv73wloB0vuaAhHQJzk2YtxuKp1fZQoaAZHQHE93tF8XvZoB00DAWgIR0Cc5RR8MNMHdX2UKGgGR0BytPaqS5iFaAdL2mgIR0Cc5lxFAmiQdX2UKGgGR0BybLUZvUBoaAdLzmgIR0Cc5tPUrkKedX2UKGgGR0ByFvgccU/OaAdL7mgIR0Cc5yq4pc5bdX2UKGgGR0BQ9UPlMh5gaAdLp2gIR0Cc50AtnPE9dX2UKGgGR0Bye2ZF5OafaAdL22gIR0Cc6D83dbgTdX2UKGgGR0Bvy/l+3H7xaAdL2mgIR0Cc6FOinHeadX2UKGgGR0BRhqpYLb5/aAdLsWgIR0Cc6H6Zpi7TdX2UKGgGR0BwXOuaF23baAdL1WgIR0Cc6PK+SKWLdX2UKGgGR0BwNgDB/I8yaAdL3mgIR0Cc6R6l+EytdX2UKGgGR0BxNLaEi+tbaAdL32gIR0Cc6TiQkonbdX2UKGgGR0Bxk05U96kZaAdL+GgIR0Cc6aIPK+zudWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 492,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45397975a53c8b8f9c747d56bd40a6533e80f6111a58050ec7f2e4e7219123af
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bea4880ebfa9e9c572703a34ffd77313a159325f3421666afa6ddf1831c0db52
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b0cda8545f603daf9e6059388817d5a4bf2eba18472168f381fb718361bb9b0
|
3 |
+
size 164620
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.46501637023897, "std_reward": 21.267876156485883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-15T02:49:48.394943"}
|