File size: 2,006 Bytes
692f6bd
 
 
 
 
 
922b435
692f6bd
84fe59a
 
 
 
692f6bd
 
 
 
 
 
 
563682b
692f6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84fe59a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: nikoslefkos/relex
  results: []
datasets:
- relbert/t_rex
language:
- en
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# nikoslefkos/rebert_trex

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on relbert/t_rex.Containing 291 labels for examples with more than 100 occurences.
It achieves the following results on the evaluation set:
- Train Loss: 0.8598
- Train Accuracy: 0.7326
- Validation Loss: 1.0456
- Validation Accuracy: 0.6906
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.5343     | 0.6115         | 1.1212          | 0.6767              | 0     |
| 1.1175     | 0.6771         | 1.0503          | 0.6895              | 1     |
| 0.9745     | 0.7068         | 1.0405          | 0.6900              | 2     |
| 0.8598     | 0.7326         | 1.0456          | 0.6906              | 3     |


### Framework versions

- Transformers 4.33.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3