File size: 2,006 Bytes
692f6bd 922b435 692f6bd 84fe59a 692f6bd 563682b 692f6bd 84fe59a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: nikoslefkos/relex
results: []
datasets:
- relbert/t_rex
language:
- en
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nikoslefkos/rebert_trex
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on relbert/t_rex.Containing 291 labels for examples with more than 100 occurences.
It achieves the following results on the evaluation set:
- Train Loss: 0.8598
- Train Accuracy: 0.7326
- Validation Loss: 1.0456
- Validation Accuracy: 0.6906
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.5343 | 0.6115 | 1.1212 | 0.6767 | 0 |
| 1.1175 | 0.6771 | 1.0503 | 0.6895 | 1 |
| 0.9745 | 0.7068 | 1.0405 | 0.6900 | 2 |
| 0.8598 | 0.7326 | 1.0456 | 0.6906 | 3 |
### Framework versions
- Transformers 4.33.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3 |