File size: 2,017 Bytes
ef085a5 a58c3a9 ef085a5 8c97612 ef085a5 8c97612 ef085a5 2a48dd3 59879fe ab7fcda 8c97612 ef085a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: nikoslefkos/rebert_trex_reformed_v3
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nikoslefkos/rebert_trex_reformed_v3
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on trex for 250 labels.
It achieves the following results on the evaluation set:
- Train Loss: 0.4216
- Train Accuracy: 0.8541
- Validation Loss: 0.8042
- Validation Accuracy: 0.7628
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.4168 | 0.6536 | 0.9242 | 0.7294 | 0 |
| 0.8272 | 0.7506 | 0.8106 | 0.7534 | 1 |
| 0.6786 | 0.7826 | 0.7871 | 0.7587 | 2 |
| 0.5718 | 0.8100 | 0.7981 | 0.7571 | 3 |
| 0.4216 | 0.8541 | 0.8042 | 0.7628 | 4 |
### Framework versions
- Transformers 4.34.0
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.14.1
|