--- library_name: transformers language: - ka license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper ka results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Subtitri voice 0.1v type: mozilla-foundation/common_voice_11_0 config: ka split: test args: 'config: ka, split: test' metrics: - name: Wer type: wer value: 42.44341950016089 --- # Whisper ka This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Subtitri voice 0.1v dataset. It achieves the following results on the evaluation set: - Loss: 0.1584 - Wer: 42.4434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0471 | 2.9070 | 1000 | 0.0875 | 46.0260 | | 0.0058 | 5.8140 | 2000 | 0.1194 | 44.0363 | | 0.0004 | 8.7209 | 3000 | 0.1400 | 42.8457 | | 0.0001 | 11.6279 | 4000 | 0.1529 | 42.5829 | | 0.0 | 14.5349 | 5000 | 0.1584 | 42.4434 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0