File size: 3,200 Bytes
37f05c6
 
 
 
 
acc1550
 
 
 
 
 
 
 
 
85cde26
 
 
 
 
 
 
37f05c6
 
 
 
 
 
 
4bd5455
37f05c6
 
 
 
 
 
 
 
 
 
 
4bd5455
37f05c6
 
 
4bd5455
37f05c6
 
 
4bd5455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f05c6
 
 
4bd5455
 
 
 
acc1550
 
37f05c6
 
 
 
4bd5455
 
37f05c6
 
 
 
 
 
 
acc1550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f05c6
 
 
 
 
85cde26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
tags:
- generated_from_trainer
model-index:
- name: sentiment-polish-gpt2-large
  results:
  - task:
      type: text-classification
    dataset:
      type: allegro/klej-polemo2-out
      name: klej-polemo2-out
    metrics:
      - type: accuracy
        value: 98.58%
license: mit
datasets:
- clarin-pl/polemo2-official
language:
- pl
metrics:
- accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment-polish-gpt2-large

This model is a fine-tuned version of [sdadas/polish-gpt2-large](https://huggingface.co/sdadas/polish-gpt2-large) on the [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
It achieves the following results on the evaluation set:
- epoch: 10.0
- eval_accuracy: 0.9634
- eval_loss: 0.3139
- eval_runtime: 132.9089
- eval_samples_per_second: 197.428
- eval_steps_per_second: 98.714
- step: 65610

## Model description

Trained from [polish-gpt2-large](https://huggingface.co/sdadas/polish-gpt2-large)

## Intended uses & limitations

Sentiment analysis - neutral/negative/positive/ambiguous

## Training and evaluation data

Merged all rows from [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.

Discarded rows with length > 512.

Train/test split: 80%/20%

Datacollator:
```py
data_collator = DataCollatorWithPadding(
  tokenizer=tokenizer,
  padding="longest",
  max_length=MAX_INPUT_LENGTH,
  pad_to_multiple_of=8
)
```

## Training procedure

GPU: 2x RTX 4060Ti 16GB

Training time: 29:16:50

Using accelerate + DeepSpeed

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Evaluation

Evaluated on [allegro/klej-polemo2-out](https://huggingface.co/datasets/allegro/klej-polemo2-out) test dataset.
```py
from datasets import load_dataset
from evaluate import evaluator

data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")

# fix labels
l = {
        "__label__meta_zero": 0,
        "__label__meta_minus_m": 1,
        "__label__meta_plus_m": 2,
        "__label__meta_amb": 3
    }
def fix_labels(examples):
    examples["target"] = l[examples["target"]]
    return examples
data = data.map(fix_labels)

eval_resutls = task_evaluator.compute(
    model_or_pipeline="nie3e/sentiment-polish-gpt2-large",
    data=data,
    label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
    input_column="sentence",
    label_column="target"
)

print(eval_resutls)
```

```json
{
    "accuracy": 0.9858299595141701,
    "total_time_in_seconds": 12.71777104900002,
    "samples_per_second": 38.8432845737416,
    "latency_in_seconds": 0.02574447580769235
}
```

### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1