nm-SpaceLander / config.json
nickmar's picture
Upload PPO LunarLander-v2 trained agent from the tutorial
f1f1d59 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f687aee8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f687aee83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f687aee8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f687aee84c0>", "_build": "<function ActorCriticPolicy._build at 0x7f687aee8550>", "forward": "<function ActorCriticPolicy.forward at 0x7f687aee85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f687aee8670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f687aee8700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f687aee8790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f687aee8820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f687aee88b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f687aee8940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f68244f0d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729971007188013058, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq9Ub0kILU+zV2NPZC0m75sav08gzLouwAAAAAAAAAAk/V4vgI+pD+4qui+QbcMv9yinL5hSLa9AAAAAAAAAAAaMdW9sAXZPiZTgT7fzFW+lL2LPe5QUD4AAAAAAAAAANpqXz5TIIc/na+vPpsEmb7em6A+zQAQPgAAAAAAAAAAMPSWPqe/aT+nca0+6RpQvmj5rT7z31M+AAAAAAAAAAAA5PE7FGCGuiQjxzQ5+iUwz7XUuhoivLMAAIA/AACAP9owzj32RTO8CwwIvuPbDb45DSU8rv2PPgAAgD8AAIA/M7dePFLQ7rkofyK4rw6VsmDj2LrgA0A3AACAPwAAgD+aAA69EednPwJ0Pr16n9y+goM+vcVbpT0AAAAAAAAAADa5lz6qRkc/QVk0PAKfs76TYyc+dhMbvgAAAAAAAAAADSyIPWDErz9TNf4+tgGTvri/OD3UxpQ+AAAAAAAAAADtJE8+CBMRP7fyN77RDaW+7izLPPrsqL0AAAAAAAAAADOtKz0l8b0+mCL/vQRfwb7/YYS9repJvAAAAAAAAAAATa9PvVISkDyvv749jQ14vtQdRzpVAnO9AAAAAAAAAADGxgK+6Y2cPpaCMT5Vz2S+vT5hPTpkJz0AAAAAAAAAANrkwT1RtJo/+PmvPqsw0L56khI+rtx0PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0iw7DEWIqMAWyUTQYBjAF0lEdAkS8HhKlHjXV9lChoBkdAcCuiPyTY/WgHTU8BaAhHQJEvI6QvHtF1fZQoaAZHQHBt/863iJhoB00jAWgIR0CRMGXxe9i+dX2UKGgGR0BxR5du5z5oaAdNDwFoCEdAkTIB0p3HJnV9lChoBkdAcOQAOavzOGgHTQgBaAhHQJEyCn0kGA11fZQoaAZHQHAnqXrt3OhoB00UAWgIR0CRMi/z8P4EdX2UKGgGR0BycjtrsSkCaAdNJgFoCEdAkTNS26TW5HV9lChoBkdAcnLGUwBYFWgHTXABaAhHQJE0U0tRNyp1fZQoaAZHQHJbeUdJaq1oB00KAWgIR0CRNOh/y5I6dX2UKGgGR0BvpPSc9W6taAdNIwFoCEdAkTVkOI68x3V9lChoBkdAcVy+TvAoHGgHS/NoCEdAkTVtkOI683V9lChoBkdAb4LYbKifx2gHTRMBaAhHQJE3vTuv2Xd1fZQoaAZHQFSRHc1wYLtoB0unaAhHQJE367voePt1fZQoaAZHQHATBNIsiB5oB00GAWgIR0CROHX3xnWbdX2UKGgGR0Bx7Uxgy/KyaAdNRAFoCEdAkTlDsY2sJnV9lChoBkdAcSDGzKLbYmgHTRkBaAhHQJE5TfZVXFN1fZQoaAZHQHEcU2DQJHBoB00NAWgIR0CROhkvK2a2dX2UKGgGR0BxEvKV6eGxaAdNHAFoCEdAkTxaBqbjLnV9lChoBkdAb9dtygf2b2gHTQABaAhHQJE8i/7BO591fZQoaAZHQHL06hxo7FNoB0v6aAhHQJE9ZRO1v2p1fZQoaAZHQHFd5bMX7+FoB01BAWgIR0CRPYvvjOs1dX2UKGgGR0BQ9DURWcSXaAdN6ANoCEdAkT6NeMQ2/HV9lChoBkdAb/p2NedCmmgHTQcBaAhHQJE/LZ26kIp1fZQoaAZHQHLn1SKm8/VoB00bAWgIR0CRP2ZRKpT/dX2UKGgGR0BloRGz8gp0aAdN1ANoCEdAkT+5zT4L1HV9lChoBkdAbTWhwl0HQmgHTRoBaAhHQJE/6Skj5bh1fZQoaAZHQHFpbQTmGM5oB00OAWgIR0CRQhMhouf3dX2UKGgGR0BxRjvy9VWCaAdNDAFoCEdAkUKJO8Cgb3V9lChoBkdAcyMTuv2XcGgHTQwBaAhHQJFDXiXIEKV1fZQoaAZHQHDu5telbeNoB007AWgIR0CRQ624uscRdX2UKGgGR0BynmvNeMQ3aAdNLgFoCEdAkUTSIpH7QHV9lChoBkdAcRLTmnwXqWgHTTcBaAhHQJFGQ1cdHUd1fZQoaAZHQHAgxrN4Z/FoB0v9aAhHQJFHzhjvuw51fZQoaAZHQHCXDCxeLNxoB00nAWgIR0CRSHc6/7BPdX2UKGgGR0BwRCWZ7XxwaAdNPQFoCEdAkUk4PbwjMXV9lChoBkdAch4HR1HOKWgHTRMBaAhHQJFKCm3vx6R1fZQoaAZHQG0iB6rvLHNoB00NAWgIR0CRSl9FF2FGdX2UKGgGR0BtXI3xWkrPaAdNEAFoCEdAkUq4vJzT4XV9lChoBkdAcEnGAkLQX2gHTU4BaAhHQJFLHXsgMc91fZQoaAZHQHAdVhkRSP5oB00VAWgIR0CRSx5Sm65HdX2UKGgGR0BvSAuXeFcqaAdNJQFoCEdAkUu1JDmbLHV9lChoBkdAcPZdSVGCqmgHTQIBaAhHQJFM2L876pJ1fZQoaAZHQHGx1Z5iVjZoB00IAWgIR0CRTfU0vXbudX2UKGgGR0BxQTNu+AVgaAdNNAFoCEdAkU4SZnctXnV9lChoBkdAb7JdbgTAWWgHTS8BaAhHQJFf1QtSQ5p1fZQoaAZHQFem4n4O+ZhoB03oA2gIR0CRYdiwjdHldX2UKGgGR0Bw0KUs4DLbaAdNFQFoCEdAkWIy6+WWyHV9lChoBkdAbsNxR2r4nGgHTT4BaAhHQJFiW+pOvdN1fZQoaAZHQHNhm8/UvwpoB0vyaAhHQJFinlmvnr91fZQoaAZHQG9BPIGQjlhoB00kAWgIR0CRYxYHxBmgdX2UKGgGR0BxUkqrilzmaAdNKwFoCEdAkWO/MbFS9HV9lChoBkdAcp7sfJV81GgHTQwBaAhHQJFkIjjaPCF1fZQoaAZHQHGwlnuiN85oB00UAWgIR0CRZFlbeMyadX2UKGgGR0BuEWs90RvnaAdNKwFoCEdAkWRmO2iL23V9lChoBkdAbD6JRfnfVWgHTSkBaAhHQJFkjOryUcJ1fZQoaAZHQHE0xY7q6e5oB00pAWgIR0CRZU29+PRzdX2UKGgGR0Bw/Mfkmx+saAdL+2gIR0CRZgTmW+oMdX2UKGgGR0BxefSmZVn3aAdNPgFoCEdAkWbKAz544nV9lChoBkdAbtA6RQrMDGgHTUgBaAhHQJFoA2Jiy6d1fZQoaAZHQHJWglruYyBoB00+AWgIR0CRaJ/aQFLWdX2UKGgGR0Bv/6xu89OiaAdNCgFoCEdAkWkH1anrIHV9lChoBkdAcgG0Xxe9jGgHTQ4BaAhHQJFpe6RQrMF1fZQoaAZHQHCS2ecx0uFoB00DAWgIR0CRaZJKraM8dX2UKGgGR0By6I8Md92HaAdNHAFoCEdAkWoH9aUzK3V9lChoBkdAbi+1baAWi2gHTRkBaAhHQJFqrUhFEzB1fZQoaAZHQHDhaohpxm1oB0v0aAhHQJFq7N3W4Ex1fZQoaAZHQHA+++mFajhoB00TAWgIR0CRayqubI91dX2UKGgGR0ByfUgdOqNqaAdNGwFoCEdAkWwD1schknV9lChoBkdAckBXWvr4WWgHTRsBaAhHQJFsMK5TZQJ1fZQoaAZHQHDRwEMb3oNoB00sAWgIR0CRbDjcVQANdX2UKGgGR0BvUQJRfnfVaAdNEQFoCEdAkW1+p4rz5HV9lChoBkdAbaMdIXj2jGgHTTQBaAhHQJFtrUH6dlN1fZQoaAZHQHFB6o/A0sRoB00qAWgIR0CRbvOBDohZdX2UKGgGR0Byg6FL39JjaAdNCAFoCEdAkXDOWWyC4HV9lChoBkdAcq3iPhhpg2gHTSwBaAhHQJFxBkrf+CN1fZQoaAZHQHJ29W2gFotoB01GAWgIR0CRcSouwosqdX2UKGgGR0BvyUzwc5sCaAdNJQFoCEdAkXE+xB3RonV9lChoBkdAcQAy6MBIWmgHTRkBaAhHQJFxZwZOzpp1fZQoaAZHQHEyLpzLfUFoB00PAWgIR0CRcZCbtqpMdX2UKGgGR0By0vOB19v1aAdNBwFoCEdAkXIoNI9TxXV9lChoBkdAbwBVhkRSP2gHTRcBaAhHQJFyVuivgWJ1fZQoaAZHQG+vgRkEs8RoB00KAWgIR0CRcnLfk3judX2UKGgGR0BI2ccuJ1q4aAdL62gIR0CRcqIt16mgdX2UKGgGR0BxqomLLpzLaAdNHAFoCEdAkXQMsUZeiXV9lChoBkdAYKj+6RQrMGgHTegDaAhHQJF0ZZaFEiN1fZQoaAZHQG4hkv0yxiZoB00yAWgIR0CRdP8tf5UMdX2UKGgGR0Bs6tOdoWYXaAdNCgFoCEdAkXVjg/C66XV9lChoBkdAcQkEMspXqGgHTS0BaAhHQJF21et0V8F1fZQoaAZHQHLOdAcDKYBoB00kAWgIR0CReGebutwKdX2UKGgGR0BvBsGPgeijaAdL82gIR0CRedCZF5OadX2UKGgGR0Bv4J1aGHpKaAdNBQFoCEdAkXoN5+pfhXV9lChoBkdAb1JwLmZE2GgHTQsBaAhHQJF6f5IpYtB1fZQoaAZHQHEieTNdJJ5oB00jAWgIR0CRewxm03OwdX2UKGgGR0BwpzZoPCl8aAdNLQFoCEdAkXwVglWwNnV9lChoBkdAbWPUExIrfGgHTRkBaAhHQJF9PaPCEYh1fZQoaAZHQG8cVK5CngpoB00nAWgIR0CRfVU+s5n2dX2UKGgGR0Bw0uiKziS8aAdNJQFoCEdAkX2JeE7GN3V9lChoBkdAcBBqpcX3xmgHTUgBaAhHQJF9u/QBxPx1fZQoaAZHQHEqeJ+DvmZoB00IAWgIR0CRfnr0J4SpdX2UKGgGR0By9G8Hv+fiaAdL9WgIR0CRftY4ACGOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}