File size: 1,868 Bytes
c5a2cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: VietAI/vit5-large-vietnews-summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mymodel_larger_vietnews_30k_2e5_3epoch_batchsize4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mymodel_larger_vietnews_30k_2e5_3epoch_batchsize4

This model is a fine-tuned version of [VietAI/vit5-large-vietnews-summarization](https://huggingface.co/VietAI/vit5-large-vietnews-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7734
- Rouge1: 0.6007
- Rouge2: 0.2982
- Rougel: 0.397
- Rougelsum: 0.3967
- Gen Len: 40.4167

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.7493        | 1.0   | 6750  | 1.6597          | 0.5919 | 0.2925 | 0.3926 | 0.3924    | 39.202  |
| 1.2965        | 2.0   | 13500 | 1.6761          | 0.5986 | 0.2972 | 0.3962 | 0.3961    | 40.2633 |
| 1.0039        | 3.0   | 20250 | 1.7734          | 0.6007 | 0.2982 | 0.397  | 0.3967    | 40.4167 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1