Update README.md
Browse files
README.md
CHANGED
|
@@ -3,197 +3,159 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
|
| 7 |
+
|
| 8 |
+
This repository contains a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model, specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self-supervised model designed for audio-visual speech recognition, leveraging both audio and visual modalities to achieve robust performance, especially in noisy environments.
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
Key features of this repository include:
|
| 12 |
+
|
| 13 |
+
- Pre-trained Models: Access pre-trained AV-HuBERT models fine-tuned on the MuAViC dataset. The pre-trained model been exported from [MuAViC](https://github.com/facebookresearch/muavic) repository.
|
| 14 |
+
|
| 15 |
+
- Inference scripts: Easily pipelines using Huggingface’s interface.
|
| 16 |
+
|
| 17 |
+
- Data preprocessing scripts: Including normalize frame rate, extract lips and audio.
|
| 18 |
+
|
| 19 |
+
### Inference code
|
| 20 |
+
|
| 21 |
+
```sh
|
| 22 |
+
git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
|
| 23 |
+
cd AV-HuBERT-S2S
|
| 24 |
+
conda create -n avhuberts2s python=3.9
|
| 25 |
+
conda activate avhuberts2s
|
| 26 |
+
pip install -r requirements.txt
|
| 27 |
+
python run_example.py
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
from src.model.avhubert2text import AV2TextForConditionalGeneration
|
| 32 |
+
from src.dataset.load_data import load_feature
|
| 33 |
+
from transformers import Speech2TextTokenizer
|
| 34 |
+
import torch
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
# Choose language to run example
|
| 38 |
+
AVAILABEL_LANGUAGES = ["ar", "de", "el", "en", "es", "fr", "it", "pt", "ru", "multilingual"]
|
| 39 |
+
language = "ru"
|
| 40 |
+
assert language in AVAILABEL_LANGUAGES, f"Language {language} is not available, please choose one of {AVAILABEL_LANGUAGES}"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Load model and tokenizer
|
| 44 |
+
model_name_or_path = f"nguyenvulebinh/AV-HuBERT-MuAViC-{language}"
|
| 45 |
+
model = AV2TextForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir='./model-bin')
|
| 46 |
+
tokenizer = Speech2TextTokenizer.from_pretrained(model_name_or_path, cache_dir='./model-bin')
|
| 47 |
+
|
| 48 |
+
model = model.cuda().eval()
|
| 49 |
+
|
| 50 |
+
# Load example video and audio
|
| 51 |
+
video_example = f"./example/video_processed/{language}_lip_movement.mp4"
|
| 52 |
+
audio_example = f"./example/video_processed/{language}_audio.wav"
|
| 53 |
+
if not os.path.exists(video_example) or not os.path.exists(audio_example):
|
| 54 |
+
print(f"WARNING: Example video and audio for {language} is not available english will be used instead")
|
| 55 |
+
video_example = f"./example/video_processed/en_lip_movement.mp4"
|
| 56 |
+
audio_example = f"./example/video_processed/en_audio.wav"
|
| 57 |
+
|
| 58 |
+
# Load and process example
|
| 59 |
+
sample = load_feature(
|
| 60 |
+
video_example,
|
| 61 |
+
audio_example
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
audio_feats = sample['audio_source'].cuda()
|
| 65 |
+
video_feats = sample['video_source'].cuda()
|
| 66 |
+
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
|
| 67 |
+
|
| 68 |
+
# Generate text
|
| 69 |
+
output = model.generate(
|
| 70 |
+
audio_feats,
|
| 71 |
+
attention_mask=attention_mask,
|
| 72 |
+
video=video_feats,
|
| 73 |
+
max_length=1024,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
print(tokenizer.batch_decode(output, skip_special_tokens=True))
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Data preprocessing scripts
|
| 80 |
+
|
| 81 |
+
```sh
|
| 82 |
+
mkdir model-bin
|
| 83 |
+
cd model-bin
|
| 84 |
+
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
|
| 85 |
+
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
|
| 86 |
+
|
| 87 |
+
# raw video only support 4:3 ratio now
|
| 88 |
+
cp raw_video.mp4 ./example/
|
| 89 |
+
|
| 90 |
+
python src/dataset/video_to_audio_lips.py
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
### Pretrained AVSR model
|
| 94 |
+
|
| 95 |
+
<table align="center">
|
| 96 |
+
<tr>
|
| 97 |
+
<th>Languages</th>
|
| 98 |
+
<th>Huggingface</th>
|
| 99 |
+
</tr>
|
| 100 |
+
<tr>
|
| 101 |
+
<th>Arabic</th>
|
| 102 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ar">Checkpoint-AR</a></th>
|
| 103 |
+
</tr>
|
| 104 |
+
<tr>
|
| 105 |
+
<th>German</th>
|
| 106 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-de">Checkpoint-DE</a></th>
|
| 107 |
+
</tr>
|
| 108 |
+
<tr>
|
| 109 |
+
<th>Greek</th>
|
| 110 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-el">Checkpoint-EL</a></th>
|
| 111 |
+
</tr>
|
| 112 |
+
<tr>
|
| 113 |
+
<th>English</th>
|
| 114 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-en">Checkpoint-EN</a></th>
|
| 115 |
+
</tr>
|
| 116 |
+
<tr>
|
| 117 |
+
<th>Spanish</th>
|
| 118 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-es">Checkpoint-ES</a></th>
|
| 119 |
+
</tr>
|
| 120 |
+
<tr>
|
| 121 |
+
<th>French</th>
|
| 122 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-fr">Checkpoint-FR</a></th>
|
| 123 |
+
</tr>
|
| 124 |
+
<tr>
|
| 125 |
+
<th>Italian</th>
|
| 126 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-it">Checkpoint-IT</a></th>
|
| 127 |
+
</tr>
|
| 128 |
+
<tr>
|
| 129 |
+
<th>Portuguese</th>
|
| 130 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-pt">Checkpoint-PT</a></th>
|
| 131 |
+
</tr>
|
| 132 |
+
<tr>
|
| 133 |
+
<th>Russian</th>
|
| 134 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ru">Checkpoint-RU</a></th>
|
| 135 |
+
</tr>
|
| 136 |
+
<tr>
|
| 137 |
+
<th>Multilingual</th>
|
| 138 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-multilingual">Checkpoint-ar_de_el_es_fr_it_pt_ru</a></th>
|
| 139 |
+
</tr>
|
| 140 |
+
</table>
|
| 141 |
+
|
| 142 |
+
## Acknowledgments
|
| 143 |
+
|
| 144 |
+
**AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
|
| 145 |
+
|
| 146 |
+
**MuAViC Repository**: We also gratefully acknowledge the creators of the MuAViC dataset and repository for providing the pre-trained models used in this project
|
| 147 |
+
|
| 148 |
+
## License
|
| 149 |
+
|
| 150 |
+
CC-BY-NC 4.0
|
| 151 |
+
|
| 152 |
+
## Citation
|
| 153 |
+
|
| 154 |
+
```bibtex
|
| 155 |
+
@article{anwar2023muavic,
|
| 156 |
+
title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
|
| 157 |
+
author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
|
| 158 |
+
journal={arXiv preprint arXiv:2303.00628},
|
| 159 |
+
year={2023}
|
| 160 |
+
}
|
| 161 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|