Update README.md
Browse files
README.md
CHANGED
@@ -43,7 +43,7 @@ from transformers import AutoTokenizer
|
|
43 |
from vllm import LLM, SamplingParams
|
44 |
|
45 |
max_model_len, tp_size = 4096, 1
|
46 |
-
model_name = "neuralmagic
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
49 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
@@ -66,7 +66,9 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
66 |
|
67 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
-
|
|
|
|
|
70 |
```bash
|
71 |
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w8a8" --calib_size 2048 --dampening_frac 0.01 --observer mse
|
72 |
```
|
@@ -151,16 +153,20 @@ oneshot(
|
|
151 |
model.save_pretrained(quant_path, save_compressed=True)
|
152 |
tokenizer.save_pretrained(quant_path)
|
153 |
```
|
|
|
154 |
|
155 |
## Evaluation
|
156 |
|
157 |
-
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
158 |
|
|
|
|
|
|
|
159 |
OpenLLM Leaderboard V1:
|
160 |
```
|
161 |
lm_eval \
|
162 |
--model vllm \
|
163 |
-
--model_args pretrained="neuralmagic
|
164 |
--tasks openllm \
|
165 |
--write_out \
|
166 |
--batch_size auto \
|
@@ -168,11 +174,23 @@ lm_eval \
|
|
168 |
--show_config
|
169 |
```
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
#### HumanEval
|
172 |
##### Generation
|
173 |
```
|
174 |
python3 codegen/generate.py \
|
175 |
-
--model neuralmagic
|
176 |
--bs 16 \
|
177 |
--temperature 0.2 \
|
178 |
--n_samples 50 \
|
@@ -182,20 +200,21 @@ python3 codegen/generate.py \
|
|
182 |
##### Sanitization
|
183 |
```
|
184 |
python3 evalplus/sanitize.py \
|
185 |
-
humaneval/neuralmagic
|
186 |
```
|
187 |
##### Evaluation
|
188 |
```
|
189 |
evalplus.evaluate \
|
190 |
--dataset humaneval \
|
191 |
-
--samples humaneval/neuralmagic
|
192 |
```
|
|
|
193 |
|
194 |
### Accuracy
|
195 |
|
196 |
#### OpenLLM Leaderboard V1 evaluation scores
|
197 |
|
198 |
-
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic
|
199 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
200 |
| ARC-Challenge (Acc-Norm, 25-shot) | 55.63 | 55.12 |
|
201 |
| GSM8K (Strict-Match, 5-shot) | 60.96 | 60.58 |
|
@@ -207,7 +226,7 @@ evalplus.evaluate \
|
|
207 |
| **Recovery** | **100.00** | **99.51** |
|
208 |
|
209 |
#### OpenLLM Leaderboard V2 evaluation scores
|
210 |
-
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic
|
211 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
212 |
| IFEval (Inst Level Strict Acc, 0-shot)| 67.99 | 67.03 |
|
213 |
| BBH (Acc-Norm, 3-shot) | 44.11 | 43.53 |
|
@@ -219,7 +238,7 @@ evalplus.evaluate \
|
|
219 |
| **Recovery** | **100.00** | **98.40** |
|
220 |
|
221 |
#### HumanEval pass@1 scores
|
222 |
-
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic
|
223 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
224 |
| HumanEval Pass@1 | 53.40 | 54.9 |
|
225 |
|
@@ -230,6 +249,16 @@ evalplus.evaluate \
|
|
230 |
This model achieves up to 1.4x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
|
231 |
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
### Single-stream performance (measured with vLLM version 0.6.6.post1)
|
234 |
<table>
|
235 |
<tr>
|
|
|
43 |
from vllm import LLM, SamplingParams
|
44 |
|
45 |
max_model_len, tp_size = 4096, 1
|
46 |
+
model_name = "neuralmagic/granite-3.1-2b-instruct-quantized.w8a8"
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
49 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
|
|
66 |
|
67 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
+
<details>
|
70 |
+
<summary>Model Creation Code</summary>
|
71 |
+
|
72 |
```bash
|
73 |
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w8a8" --calib_size 2048 --dampening_frac 0.01 --observer mse
|
74 |
```
|
|
|
153 |
model.save_pretrained(quant_path, save_compressed=True)
|
154 |
tokenizer.save_pretrained(quant_path)
|
155 |
```
|
156 |
+
</details>
|
157 |
|
158 |
## Evaluation
|
159 |
|
160 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
161 |
|
162 |
+
<details>
|
163 |
+
<summary>Evaluation Commands</summary>
|
164 |
+
|
165 |
OpenLLM Leaderboard V1:
|
166 |
```
|
167 |
lm_eval \
|
168 |
--model vllm \
|
169 |
+
--model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
170 |
--tasks openllm \
|
171 |
--write_out \
|
172 |
--batch_size auto \
|
|
|
174 |
--show_config
|
175 |
```
|
176 |
|
177 |
+
OpenLLM Leaderboard V2:
|
178 |
+
```
|
179 |
+
lm_eval \
|
180 |
+
--model vllm \
|
181 |
+
--model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
182 |
+
--tasks leaderboard \
|
183 |
+
--write_out \
|
184 |
+
--batch_size auto \
|
185 |
+
--output_path output_dir \
|
186 |
+
--show_config
|
187 |
+
```
|
188 |
+
|
189 |
#### HumanEval
|
190 |
##### Generation
|
191 |
```
|
192 |
python3 codegen/generate.py \
|
193 |
+
--model neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 \
|
194 |
--bs 16 \
|
195 |
--temperature 0.2 \
|
196 |
--n_samples 50 \
|
|
|
200 |
##### Sanitization
|
201 |
```
|
202 |
python3 evalplus/sanitize.py \
|
203 |
+
humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2
|
204 |
```
|
205 |
##### Evaluation
|
206 |
```
|
207 |
evalplus.evaluate \
|
208 |
--dataset humaneval \
|
209 |
+
--samples humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized
|
210 |
```
|
211 |
+
</details>
|
212 |
|
213 |
### Accuracy
|
214 |
|
215 |
#### OpenLLM Leaderboard V1 evaluation scores
|
216 |
|
217 |
+
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 |
|
218 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
219 |
| ARC-Challenge (Acc-Norm, 25-shot) | 55.63 | 55.12 |
|
220 |
| GSM8K (Strict-Match, 5-shot) | 60.96 | 60.58 |
|
|
|
226 |
| **Recovery** | **100.00** | **99.51** |
|
227 |
|
228 |
#### OpenLLM Leaderboard V2 evaluation scores
|
229 |
+
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 |
|
230 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
231 |
| IFEval (Inst Level Strict Acc, 0-shot)| 67.99 | 67.03 |
|
232 |
| BBH (Acc-Norm, 3-shot) | 44.11 | 43.53 |
|
|
|
238 |
| **Recovery** | **100.00** | **98.40** |
|
239 |
|
240 |
#### HumanEval pass@1 scores
|
241 |
+
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 |
|
242 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
243 |
| HumanEval Pass@1 | 53.40 | 54.9 |
|
244 |
|
|
|
249 |
This model achieves up to 1.4x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
|
250 |
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
251 |
|
252 |
+
<details>
|
253 |
+
<summary>Benchmarking Command</summary>
|
254 |
+
|
255 |
+
```
|
256 |
+
guidellm --model neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
|
257 |
+
```
|
258 |
+
|
259 |
+
</details>
|
260 |
+
|
261 |
+
|
262 |
### Single-stream performance (measured with vLLM version 0.6.6.post1)
|
263 |
<table>
|
264 |
<tr>
|