Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- int8
|
4 |
+
- vllm
|
5 |
+
- llm-compressor
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
license: apache-2.0
|
10 |
+
base_model:
|
11 |
+
- Qwen/Qwen2.5-3B
|
12 |
+
---
|
13 |
+
|
14 |
+
# Qwen2.5-3B-quantized.w8a16
|
15 |
+
|
16 |
+
## Model Overview
|
17 |
+
- **Model Architecture:** Qwen2
|
18 |
+
- **Input:** Text
|
19 |
+
- **Output:** Text
|
20 |
+
- **Model Optimizations:**
|
21 |
+
- **Weight quantization:** INT8
|
22 |
+
- **Intended Use Cases:** Similarly to [Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B), this is a base language model.
|
23 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
|
24 |
+
- **Release Date:** 10/09/2024
|
25 |
+
- **Version:** 1.0
|
26 |
+
- **Model Developers:** Neural Magic
|
27 |
+
|
28 |
+
Quantized version of [Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B).
|
29 |
+
It achieves an OpenLLMv1 score of 63.8, compared to 63.6 for [Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B).
|
30 |
+
|
31 |
+
### Model Optimizations
|
32 |
+
|
33 |
+
This model was obtained by quantizing the weights of [Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) to INT8 data type.
|
34 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
35 |
+
|
36 |
+
Only the weights of the linear operators within transformers blocks are quantized.
|
37 |
+
Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
|
38 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
|
39 |
+
|
40 |
+
|
41 |
+
## Deployment
|
42 |
+
|
43 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
44 |
+
|
45 |
+
```python
|
46 |
+
from vllm import LLM, SamplingParams
|
47 |
+
from transformers import AutoTokenizer
|
48 |
+
|
49 |
+
model_id = "neuralmagic/Qwen2.5-3B-quantized.w8a16"
|
50 |
+
number_gpus = 1
|
51 |
+
max_model_len = 8192
|
52 |
+
|
53 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
+
|
57 |
+
prompt = "Give me a short introduction to large language model."
|
58 |
+
|
59 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
|
60 |
+
|
61 |
+
outputs = llm.generate(prompt, sampling_params)
|
62 |
+
|
63 |
+
generated_text = outputs[0].outputs[0].text
|
64 |
+
print(generated_text)
|
65 |
+
```
|
66 |
+
|
67 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## Evaluation
|
72 |
+
|
73 |
+
The model was evaluated on the OpenLLMv1 benchmark, composed of MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
74 |
+
Evaluation was conducted using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
75 |
+
|
76 |
+
### Accuracy
|
77 |
+
|
78 |
+
<table>
|
79 |
+
<tr>
|
80 |
+
<td><strong>Category</strong>
|
81 |
+
</td>
|
82 |
+
<td><strong>Benchmark</strong>
|
83 |
+
</td>
|
84 |
+
<td><strong>Qwen2.5-3B</strong>
|
85 |
+
</td>
|
86 |
+
<td><strong>Qwen2.5-3B-quantized.w8a16<br>(this model)</strong>
|
87 |
+
</td>
|
88 |
+
<td><strong>Recovery</strong>
|
89 |
+
</td>
|
90 |
+
</tr>
|
91 |
+
<tr>
|
92 |
+
<td rowspan="8" ><strong>OpenLLM v1</strong>
|
93 |
+
</td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td>MMLU (5-shot)
|
97 |
+
</td>
|
98 |
+
<td>65.68
|
99 |
+
</td>
|
100 |
+
<td>65.65
|
101 |
+
</td>
|
102 |
+
<td>100.0%
|
103 |
+
</td>
|
104 |
+
</tr>
|
105 |
+
<tr>
|
106 |
+
<td>ARC Challenge (25-shot)
|
107 |
+
</td>
|
108 |
+
<td>53.58
|
109 |
+
</td>
|
110 |
+
<td>53.07
|
111 |
+
</td>
|
112 |
+
<td>99.0%
|
113 |
+
</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td>GSM-8k (5-shot, strict-match)
|
117 |
+
</td>
|
118 |
+
<td>68.23
|
119 |
+
</td>
|
120 |
+
<td>70.05
|
121 |
+
</td>
|
122 |
+
<td>102.7%
|
123 |
+
</td>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td>Hellaswag (10-shot)
|
127 |
+
</td>
|
128 |
+
<td>51.83
|
129 |
+
</td>
|
130 |
+
<td>51.78
|
131 |
+
</td>
|
132 |
+
<td>99.9%
|
133 |
+
</td>
|
134 |
+
</tr>
|
135 |
+
<tr>
|
136 |
+
<td>Winogrande (5-shot)
|
137 |
+
</td>
|
138 |
+
<td>70.64
|
139 |
+
</td>
|
140 |
+
<td>70.56
|
141 |
+
</td>
|
142 |
+
<td>99.9%
|
143 |
+
</td>
|
144 |
+
</tr>
|
145 |
+
<tr>
|
146 |
+
<td>TruthfulQA (0-shot, mc2)
|
147 |
+
</td>
|
148 |
+
<td>49.93
|
149 |
+
</td>
|
150 |
+
<td>48.88
|
151 |
+
</td>
|
152 |
+
<td>99.9%
|
153 |
+
</td>
|
154 |
+
</tr>
|
155 |
+
<tr>
|
156 |
+
<td><strong>Average</strong>
|
157 |
+
</td>
|
158 |
+
<td><strong>63.59</strong>
|
159 |
+
</td>
|
160 |
+
<td><strong>63.78</strong>
|
161 |
+
</td>
|
162 |
+
<td><strong>100.3%</strong>
|
163 |
+
</td>
|
164 |
+
</tr>
|
165 |
+
</table>
|
166 |
+
|
167 |
+
### Reproduction
|
168 |
+
|
169 |
+
The results were obtained using the following command:
|
170 |
+
|
171 |
+
```
|
172 |
+
lm_eval \
|
173 |
+
--model vllm \
|
174 |
+
--model_args pretrained="neuralmagic/Qwen2.5-3B-quantized.w8a16",dtype=auto,max_model_len=4096,add_bos_token=True,tensor_parallel_size=1 \
|
175 |
+
--tasks openllm \
|
176 |
+
--batch_size auto
|
177 |
+
```
|