Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
35 |
-
It achieves
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -131,14 +131,11 @@ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w4a16")
|
|
131 |
|
132 |
## Evaluation
|
133 |
|
134 |
-
The model was evaluated on
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
--tasks openllm \
|
140 |
-
--batch_size auto
|
141 |
-
```
|
142 |
|
143 |
### Accuracy
|
144 |
|
@@ -148,96 +145,170 @@ lm_eval \
|
|
148 |
<td><strong>Benchmark</strong>
|
149 |
</td>
|
150 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
151 |
-
</td>
|
152 |
-
<td><strong>hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4</strong>
|
153 |
</td>
|
154 |
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w4a16 (this model)</strong>
|
155 |
</td>
|
156 |
-
<td><strong>Recovery
|
157 |
</td>
|
158 |
</tr>
|
159 |
<tr>
|
160 |
<td>MMLU (5-shot)
|
161 |
</td>
|
162 |
-
<td>
|
163 |
-
</td>
|
164 |
-
<td>81.42
|
165 |
</td>
|
166 |
-
<td>
|
167 |
</td>
|
168 |
-
<td>99.
|
169 |
</td>
|
170 |
</tr>
|
171 |
<tr>
|
172 |
-
<td>
|
173 |
</td>
|
174 |
-
<td>
|
175 |
-
</td>
|
176 |
-
<td>70.13
|
177 |
</td>
|
178 |
-
<td>
|
179 |
</td>
|
180 |
-
<td>99.
|
181 |
</td>
|
182 |
</tr>
|
183 |
<tr>
|
184 |
-
<td>
|
|
|
|
|
|
|
|
|
185 |
</td>
|
186 |
-
<td>
|
187 |
</td>
|
188 |
-
|
|
|
|
|
189 |
</td>
|
190 |
-
<td>
|
191 |
</td>
|
192 |
-
<td>
|
|
|
|
|
193 |
</td>
|
194 |
</tr>
|
195 |
<tr>
|
196 |
<td>Hellaswag (10-shot)
|
197 |
-
</td>
|
198 |
-
<td>86.33
|
199 |
</td>
|
200 |
-
<td>86.
|
201 |
</td>
|
202 |
-
<td>86.
|
203 |
</td>
|
204 |
-
<td>99.
|
205 |
</td>
|
206 |
</tr>
|
207 |
<tr>
|
208 |
<td>Winogrande (5-shot)
|
209 |
</td>
|
210 |
-
<td>85.
|
211 |
</td>
|
212 |
-
<td>
|
213 |
</td>
|
214 |
-
<td>
|
215 |
-
</td>
|
216 |
-
<td>99.45%
|
217 |
</td>
|
218 |
</tr>
|
219 |
<tr>
|
220 |
-
<td>TruthfulQA (0-shot)
|
221 |
-
</td>
|
222 |
-
<td>59.90
|
223 |
</td>
|
224 |
-
<td>
|
225 |
</td>
|
226 |
<td>58.74
|
227 |
</td>
|
228 |
-
<td>
|
229 |
</td>
|
230 |
</tr>
|
231 |
<tr>
|
232 |
<td><strong>Average</strong>
|
233 |
</td>
|
234 |
-
<td><strong>
|
235 |
</td>
|
236 |
-
<td><strong>
|
237 |
</td>
|
238 |
-
<td><strong>
|
239 |
-
</td>
|
240 |
-
<td><strong>99.83%</strong>
|
241 |
</td>
|
242 |
</tr>
|
243 |
-
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
35 |
+
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag and Winogrande, and within 3.2% for TruthfulQA.
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
|
|
131 |
|
132 |
## Evaluation
|
133 |
|
134 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
135 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
136 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
137 |
+
|
138 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
|
|
|
|
|
|
139 |
|
140 |
### Accuracy
|
141 |
|
|
|
145 |
<td><strong>Benchmark</strong>
|
146 |
</td>
|
147 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
|
|
|
|
148 |
</td>
|
149 |
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w4a16 (this model)</strong>
|
150 |
</td>
|
151 |
+
<td><strong>Recovery</strong>
|
152 |
</td>
|
153 |
</tr>
|
154 |
<tr>
|
155 |
<td>MMLU (5-shot)
|
156 |
</td>
|
157 |
+
<td>83.94
|
|
|
|
|
158 |
</td>
|
159 |
+
<td>83.55
|
160 |
</td>
|
161 |
+
<td>99.5%
|
162 |
</td>
|
163 |
</tr>
|
164 |
<tr>
|
165 |
+
<td>MMLU (CoT, 0-shot)
|
166 |
</td>
|
167 |
+
<td>86.23
|
|
|
|
|
168 |
</td>
|
169 |
+
<td>85.57
|
170 |
</td>
|
171 |
+
<td>99.2%
|
172 |
</td>
|
173 |
</tr>
|
174 |
<tr>
|
175 |
+
<td>ARC Challenge (0-shot)
|
176 |
+
</td>
|
177 |
+
<td>93.34
|
178 |
+
</td>
|
179 |
+
<td>92.83
|
180 |
</td>
|
181 |
+
<td>99.5%
|
182 |
</td>
|
183 |
+
</tr>
|
184 |
+
<tr>
|
185 |
+
<td>GSM-8K (CoT, 8-shot, strict-match)
|
186 |
</td>
|
187 |
+
<td>95.38
|
188 |
</td>
|
189 |
+
<td>94.39
|
190 |
+
</td>
|
191 |
+
<td>99.0%
|
192 |
</td>
|
193 |
</tr>
|
194 |
<tr>
|
195 |
<td>Hellaswag (10-shot)
|
|
|
|
|
196 |
</td>
|
197 |
+
<td>86.66
|
198 |
</td>
|
199 |
+
<td>86.06
|
200 |
</td>
|
201 |
+
<td>99.3%
|
202 |
</td>
|
203 |
</tr>
|
204 |
<tr>
|
205 |
<td>Winogrande (5-shot)
|
206 |
</td>
|
207 |
+
<td>85.32
|
208 |
</td>
|
209 |
+
<td>85.16
|
210 |
</td>
|
211 |
+
<td>99.8%
|
|
|
|
|
212 |
</td>
|
213 |
</tr>
|
214 |
<tr>
|
215 |
+
<td>TruthfulQA (0-shot, mc2)
|
|
|
|
|
216 |
</td>
|
217 |
+
<td>60.65
|
218 |
</td>
|
219 |
<td>58.74
|
220 |
</td>
|
221 |
+
<td>96.8%
|
222 |
</td>
|
223 |
</tr>
|
224 |
<tr>
|
225 |
<td><strong>Average</strong>
|
226 |
</td>
|
227 |
+
<td><strong>84.50</strong>
|
228 |
</td>
|
229 |
+
<td><strong>83.76</strong>
|
230 |
</td>
|
231 |
+
<td><strong>99.1%</strong>
|
|
|
|
|
232 |
</td>
|
233 |
</tr>
|
234 |
+
</table>
|
235 |
+
|
236 |
+
### Reproduction
|
237 |
+
|
238 |
+
The results were obtained using the following commands:
|
239 |
+
|
240 |
+
#### MMLU
|
241 |
+
```
|
242 |
+
lm_eval \
|
243 |
+
--model vllm \
|
244 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
245 |
+
--tasks mmlu_llama_3.1_instruct \
|
246 |
+
--fewshot_as_multiturn \
|
247 |
+
--apply_chat_template \
|
248 |
+
--num_fewshot 5 \
|
249 |
+
--batch_size auto
|
250 |
+
```
|
251 |
+
|
252 |
+
#### MMLU-CoT
|
253 |
+
```
|
254 |
+
lm_eval \
|
255 |
+
--model vllm \
|
256 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
257 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
258 |
+
--apply_chat_template \
|
259 |
+
--num_fewshot 0 \
|
260 |
+
--batch_size auto
|
261 |
+
```
|
262 |
+
|
263 |
+
#### ARC-Challenge
|
264 |
+
```
|
265 |
+
lm_eval \
|
266 |
+
--model vllm \
|
267 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
268 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
269 |
+
--apply_chat_template \
|
270 |
+
--num_fewshot 0 \
|
271 |
+
--batch_size auto
|
272 |
+
```
|
273 |
+
|
274 |
+
#### GSM-8K
|
275 |
+
```
|
276 |
+
lm_eval \
|
277 |
+
--model vllm \
|
278 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
279 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
280 |
+
--fewshot_as_multiturn \
|
281 |
+
--apply_chat_template \
|
282 |
+
--num_fewshot 8 \
|
283 |
+
--batch_size auto
|
284 |
+
```
|
285 |
+
|
286 |
+
#### Hellaswag
|
287 |
+
```
|
288 |
+
lm_eval \
|
289 |
+
--model vllm \
|
290 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
291 |
+
--tasks hellaswag \
|
292 |
+
--num_fewshot 10 \
|
293 |
+
--batch_size auto
|
294 |
+
```
|
295 |
+
|
296 |
+
#### Winogrande
|
297 |
+
```
|
298 |
+
lm_eval \
|
299 |
+
--model vllm \
|
300 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
301 |
+
--tasks winogrande \
|
302 |
+
--num_fewshot 5 \
|
303 |
+
--batch_size auto
|
304 |
+
```
|
305 |
+
|
306 |
+
#### TruthfulQA
|
307 |
+
```
|
308 |
+
lm_eval \
|
309 |
+
--model vllm \
|
310 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
311 |
+
--tasks truthfulqa \
|
312 |
+
--num_fewshot 0 \
|
313 |
+
--batch_size auto
|
314 |
+
```
|