--- license: mit tags: - deepseek - int8 - vllm - llmcompressor base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B library_name: transformers --- # DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 ## Model Overview - **Model Architecture:** LlamaForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Activation quantization:** INT8 - **Release Date:** 2/1/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B). ### Model Optimizations This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. ## Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams number_gpus = 1 model_name = "neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8" tokenizer = AutoTokenizer.from_pretrained(model_name) sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot # Load model model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" model_name = model_stub.split("/")[-1] num_samples = 1024 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_stub) model = AutoModelForCausalLM.from_pretrained( model_stub, device_map=device_map, torch_dtype="auto", ) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.map(preprocess_fn) # Configure the quantization algorithm and scheme recipe = [ SmoothQuantModifier(smoothing_strength=0.8), QuantizationModifier( targets="Linear", scheme="W8A8", ignore=["lm_head"], dampening_frac=0.1, ), ] # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) # Save to disk in compressed-tensors format save_path = model_name + "-quantized.w8a8 model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --apply_chat_template \ --fewshot_as_multiturn \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` ### Accuracy
Category | Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | Recovery |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 45.05 | 45.22 | 100.4% |
GSM8K (Strict-Match, 5-shot) | 62.77 | 62.09 | 98.9% | |
HellaSwag (Acc-Norm, 10-shot) | 76.78 | 76.80 | 100.0% | |
MMLU (Acc, 5-shot) | 55.65 | 55.53 | 99.8% | |
TruthfulQA (MC2, 0-shot) | 50.55 | 49.89 | 98.7% | |
Winogrande (Acc, 5-shot) | 68.51 | 67.40 | 98.4% | |
Average Score | 59.88 | 59.49 | 99.3% | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 38.34 | 39.07 | 101.9% |
BBH (Acc-Norm, 3-shot) | 38.19 | 39.57 | 103.6% | |
Math-Hard (Exact-Match, 4-shot) | 0.00 | 0.00 | --- | |
GPQA (Acc-Norm, 0-shot) | 28.87 | 27.28 | 94.5% | |
MUSR (Acc-Norm, 0-shot) | 33.31 | 34.50 | 103.6% | |
MMLU-Pro (Acc, 5-shot) | 20.10 | 20.60 | 102.4% | |
Average Score | 26.47 | 26.84 | 101.4% | |
Coding | HumanEval (pass@1) | 49.90 | 50.90 | 102.0% |
HumanEval (pass@10) | 68.90 | 68.70 | 99.7% | |
HumanEval+ (pass@10) | 44.10 | 46.70 | 105.9% | |
HumanEval+ (pass@10) | 62.90 | 64.30 | 102.2% |
Instruction Following 256 / 128 |
Multi-turn Chat 512 / 256 |
Docstring Generation 768 / 128 |
RAG 1024 / 128 |
Code Completion 256 / 1024 |
Code Fixing 1024 / 1024 |
Large Summarization 4096 / 512 |
Large RAG 10240 / 1536 |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hardware | Model | Average cost reduction | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD |
A6000x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 3.0 | 1511 | 6.0 | 755 | 3.0 | 1483 | 3.1 | 1462 | 23.6 | 191 | 24.0 | 188 | 12.7 | 353 | 41.1 | 110 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | 1.53 | 1.9 | 2356 | 3.8 | 1175 | 2.0 | 2291 | 2.0 | 2207 | 15.2 | 297 | 15.5 | 290 | 8.5 | 531 | 28.6 | 157 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 2.35 | 1.2 | 3870 | 2.3 | 1918 | 1.3 | 3492 | 1.3 | 3335 | 9.1 | 492 | 9.5 | 472 | 5.8 | 771 | 22.7 | 198 | |
A100x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 1.5 | 1308 | 3.1 | 657 | 1.6 | 1274 | 1.6 | 1263 | 12.1 | 166 | 12.4 | 162 | 6.5 | 308 | 25.6 | 78 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | 1.30 | 1.1 | 1763 | 2.3 | 882 | 1.2 | 1716 | 1.2 | 1698 | 9.0 | 223 | 9.2 | 218 | 4.9 | 409 | 25.7 | 78 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 1.76 | 0.8 | 2501 | 1.6 | 1236 | 0.9 | 2350 | 0.9 | 2287 | 6.4 | 316 | 6.6 | 306 | 3.7 | 544 | 24.7 | 82 | |
H100x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 1.0 | 1146 | 1.9 | 574 | 1.0 | 1128 | 1.0 | 1111 | 7.6 | 144 | 7.7 | 142 | 4.1 | 266 | 16.3 | 67 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic | 1.25 | 0.7 | 1567 | 1.4 | 758 | 0.7 | 1484 | 0.7 | 1462 | 5.7 | 191 | 5.8 | 189 | 3.2 | 347 | 22.5 | 49 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 1.30 | 0.7 | 1527 | 1.4 | 768 | 0.7 | 1495 | 0.7 | 1463 | 5.6 | 194 | 5.7 | 190 | 3.1 | 350 | 14.7 | 74 |
Instruction Following 256 / 128 |
Multi-turn Chat 512 / 256 |
Docstring Generation 768 / 128 |
RAG 1024 / 128 |
Code Completion 256 / 1024 |
Code Fixing 1024 / 1024 |
Large Summarization 4096 / 512 |
Large RAG 10240 / 1536 |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hardware | Model | Average cost reduction | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD |
A6000x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 12.6 | 56742 | 5.7 | 25687 | 6.5 | 29349 | 5.2 | 23259 | 1.6 | 7250 | 1.2 | 5181 | 0.8 | 3445 | 0.1 | 616 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | 1.34 | 17.4 | 78101 | 7.6 | 34351 | 8.8 | 39790 | 7.0 | 31532 | 2.3 | 10405 | 1.5 | 6960 | 1.0 | 4355 | 0.2 | 785 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 0.91 | 10.9 | 48964 | 5.1 | 22989 | 4.8 | 21791 | 3.8 | 17039 | 2.2 | 9726 | 1.2 | 5434 | 0.6 | 2544 | 0.1 | 578 | |
A100x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 24.5 | 49296 | 11.3 | 22657 | 13.0 | 26047 | 10.5 | 21020 | 3.5 | 7029 | 2.5 | 4995 | 1.7 | 3503 | 0.3 | 659 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | 1.27 | 30.8 | 62042 | 14.1 | 28419 | 17.2 | 34554 | 13.8 | 27719 | 4.6 | 9299 | 3.1 | 6215 | 2.2 | 4331 | 0.4 | 807 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 0.97 | 22.7 | 45708 | 10.5 | 21216 | 11.1 | 22353 | 8.9 | 17939 | 3.9 | 7758 | 2.6 | 5241 | 1.6 | 3196 | 0.4 | 718 | |
H100x1 | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | --- | 49.0 | 53593 | 22.6 | 24750 | 28.3 | 30971 | 22.9 | 25035 | 7.2 | 7912 | 5.1 | 5561 | 3.6 | 3939 | 0.6 | 703 |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic | 1.14 | 57.1 | 62517 | 26.0 | 28440 | 34.5 | 37781 | 28.7 | 31360 | 7.2 | 7877 | 5.4 | 5923 | 4.3 | 4697 | 0.7 | 782 | |
neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16 | 1.01 | 49.8 | 54452 | 22.9 | 25035 | 28.5 | 31162 | 23.0 | 25200 | 6.8 | 7493 | 5.0 | 5431 | 3.7 | 4079 | 0.7 | 787 |