Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -439.40 +/- 806.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7adebfbe5bc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7adebfbe5c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7adebfbe5d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7adebfbe5da0>", "_build": "<function ActorCriticPolicy._build at 0x7adebfbe5e40>", "forward": "<function ActorCriticPolicy.forward at 0x7adebfbe5ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7adebfbe5f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7adebfbe6020>", "_predict": "<function ActorCriticPolicy._predict at 0x7adebfbe60c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7adebfbe6160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7adebfbe6200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7adebfbe62a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7adec21934c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740503156553081261, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrfg72CFqE/xRJcvg9ip771aPQ9/UEIPQAAAAAAAAAA0wNIPsRHeT8KN/4+jVo0v1Hd4r4AuX++AAAAAAAAAAAgaM4+kaj9PqL7MT/rkpS/3LjBvrQisb0AAAAAAAAAAPCmOT/gDNW9GwU8PyIErL6aaUW/YhANwAAAgD8AAAAAM+gMPScllj8wdS8+470Dv2DZnb6IQBC+AAAAAAAAAAAAgEa7EI2zP4qLrbzXWku+yF95vf4wkL0AAAAAAAAAAPpZlz6Q16A/NWNmP9oa7r51D/u+qs8TvgAAAAAAAAAA+qTQPg/Ap72Ta5w5n3uKvQmWqbo5NZQ+AACAPwAAAAD6hUo+bC+8P3hBtD6AD5e+SP6Vvc3qoTwAAAAAAAAAAOM6g74tah0/KiUOv5HZhr97/Bg/IYGJPgAAAAAAAAAAhtMKP0FMPz9g5Xc/l/9gv3FhAL9KMR2+AAAAAAAAAABzve89/qqTPycwHj9MkCW/mIM6vtjHRL4AAAAAAAAAAO2UbL7WhLY/IlgNv5URg74Cpk89nfOuPQAAAAAAAAAAuiFhvuj4pj2Blhw/gdS4v2tKrL9mZCW+AAAAAAAAAABANRu+EyskPwWuLb7O93W/aVHlPWNn5T0AAAAAAAAAAADM07xlq5I/Hm/9vQoZSr8jsSM9TXrRPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDgu0hNdqtaMAWyUSz2MAXSUR0Bo4lLteD3/dX2UKGgGR8BV5iwOe8PGaAdLSWgIR0Bo4uTcIqsmdX2UKGgGR8Bnj8vugHu7aAdLTmgIR0Bo5C8FpwjudX2UKGgGR8BLTdtuUD+zaAdLYmgIR0Bo5xfYzzmPdX2UKGgGR8Bwiuk0rK/3aAdLUmgIR0Bo59zjm0VrdX2UKGgGR8BmOdlCkXUIaAdLTGgIR0Bo59uLrHENdX2UKGgGR8BxDg3ZPEbYaAdLPWgIR0Bo6MCxNZeSdX2UKGgGR8Ba+/Zdv864aAdLVmgIR0Bo6Lvd/J/5dX2UKGgGR8B0/UPH1e0HaAdLUWgIR0Bo6QpazNUwdX2UKGgGR8Ba+s5n13+uaAdLY2gIR0Bo6RKJ2t+1dX2UKGgGR8BgeAfW+XZ5aAdLTGgIR0Bo65bGFSKndX2UKGgGR8BKf8MEzO5baAdLgGgIR0Bo7AhOgxrSdX2UKGgGR8BouXU8V58jaAdLY2gIR0Bo7C8FpwjudX2UKGgGR8BuNqq0dBBzaAdLe2gIR0Bo7KnJkoWpdX2UKGgGR8BYr6bWmP5paAdLbmgIR0Bo7YyEcsDodX2UKGgGR8BnfA3irDIjaAdLd2gIR0Bo7vL7oB7vdX2UKGgGR8BcqWvbGm1qaAdLPGgIR0Bo70h1Tzd2dX2UKGgGR8ByM3JeVs1saAdLW2gIR0Bo73Sc9W6tdX2UKGgGR8BlerltCRfXaAdLamgIR0Bo79oexOcldX2UKGgGR8BZK8RxtHhCaAdLSmgIR0Bo8Dtb9qDcdX2UKGgGR8BfmumFajesaAdLUWgIR0Bo8z3RG+bmdX2UKGgGR8B4dMBkqc3EaAdLWGgIR0Bo8+AG0NSZdX2UKGgGR8BmoFog3cYZaAdLV2gIR0Bo87i6xxDLdX2UKGgGR8BiubWsijcmaAdLZGgIR0Bo9HTkQwsYdX2UKGgGR8Bapq0hNdqtaAdLYWgIR0Bo9S2BreqJdX2UKGgGR8BaHYGyHEdeaAdLSmgIR0Bo9fZf2K2sdX2UKGgGR8Bmg9vuPV/daAdLVGgIR0Bo9jE5yU9qdX2UKGgGR8BiCMqFyq+8aAdLUWgIR0Bo9jrxAjY7dX2UKGgGR8Blzgkona37aAdLPmgIR0Bo90GX5WRzdX2UKGgGR8BlQHVPN3W4aAdLYmgIR0Bo+Fy1eBxxdX2UKGgGR8B4KTFrEcbSaAdLXmgIR0Bo+rfR/mT1dX2UKGgGR8Bu3BuEVWS2aAdLaWgIR0Bo+rKYAsCldX2UKGgGR8BWXzRc/t6YaAdLSWgIR0Bo/IXGff4zdX2UKGgGR8BqcA91U2k0aAdLS2gIR0Bo/XfoA4n4dX2UKGgGR8BSwHOGCZndaAdLQWgIR0Bo/ZUR3/xUdX2UKGgGR8BMvKt5le4TaAdLT2gIR0Bo/dalk6LgdX2UKGgGR8Ba0VqSHM2WaAdLO2gIR0Bo/fH/95yEdX2UKGgGR8B8IgGGEf1ZaAdLcmgIR0Bo/plpXZGsdX2UKGgGR8BuNke0Xxe+aAdLc2gIR0Bo/yYoiLVGdX2UKGgGR8Bac9itq59WaAdLf2gIR0Bo/6SPluFYdX2UKGgGR8BxsUWSEDhcaAdLWmgIR0BpAZGOMl1KdX2UKGgGR8BXlMTviLl4aAdLW2gIR0BpAzrNW2gGdX2UKGgGR8BKpRf4REncaAdLemgIR0BpBD1wo9cKdX2UKGgGR8BXdxVENOM3aAdLSmgIR0BpBLZrYXfqdX2UKGgGR8BcLOVcD8tPaAdLcGgIR0BpBNPDYRNAdX2UKGgGR8BgWWCyyD7JaAdLTWgIR0BpBo4p+c6OdX2UKGgGR8BlEOYa5wwTaAdLcGgIR0BpByd8Rcu8dX2UKGgGR8BvF4eii7CjaAdLTWgIR0BpB9S619fDdX2UKGgGR8BsobW/ag27aAdLTGgIR0BpCHmxMWXUdX2UKGgGR8BwKxHDrJKbaAdLV2gIR0BpCMZHd43WdX2UKGgGR8Btk9/tpmEoaAdLSmgIR0BpCVUKiO/+dX2UKGgGR8BhnDFId2gWaAdLXWgIR0BpCzZYgaFVdX2UKGgGR8Bulqk/KQq7aAdLSWgIR0BpCzAvcrRTdX2UKGgGR8BStrROUMXraAdLP2gIR0BpC2w/xDsudX2UKGgGR8BfRYaYNRWMaAdLhmgIR0BpDHYjB2wFdX2UKGgGR8BWOaT0QK8daAdLSGgIR0BpDflnyup0dX2UKGgGR8BcKFQEZBLPaAdLgGgIR0BpDpHI6r/9dX2UKGgGR8Bu/rMotthvaAdLhmgIR0BpDv+IdlundX2UKGgGR8BKDYwZflZHaAdLQGgIR0BpD3qzJIUbdX2UKGgGR8BJhlNL127naAdLQ2gIR0BpEXAGjbi7dX2UKGgGR8BhMBaA4GUwaAdLZmgIR0BpE9BfKISEdX2UKGgGR8BlV25+YtxuaAdLeGgIR0BpE9Iy0rsjdX2UKGgGR8BmxKOvMbFTaAdLXGgIR0BpFHOKO1fFdX2UKGgGR8BXQEZzgdfcaAdLSmgIR0BpFOTLW7OFdX2UKGgGR8B1OjgzguRLaAdLWWgIR0BpFPJDE3sHdX2UKGgGR8BNzcqFyq+8aAdLQmgIR0BpFR4lhPTHdX2UKGgGR0A0olenhsInaAdLiWgIR0BpFqgmJFb3dX2UKGgGR8BhbXXXiBGyaAdLfmgIR0BpGEW69TP0dX2UKGgGR8Be0unIhhYvaAdLRmgIR0BpGK2H+IdmdX2UKGgGR8BrUgWi1y/9aAdLb2gIR0BpGe63AmAtdX2UKGgGR8BqQkY0l7dBaAdLZWgIR0BpG0zhxYJWdX2UKGgGR8BiVUE9t/FzaAdLZWgIR0BpG95Qgs9TdX2UKGgGR8Bcm3kT6BRRaAdLbGgIR0BpHX4ubqhUdX2UKGgGR8BfhbVSXMQmaAdLRGgIR0BpHl4X40uUdX2UKGgGR8BjGkEmplz2aAdLSmgIR0BpHpMJx//edX2UKGgGR8B1Es9SuQp4aAdLk2gIR0BpHt1KXfIkdX2UKGgGR8B0Byw2VE/jaAdLVmgIR0BpILFAE+xGdX2UKGgGR8B2tTttygf2aAdLcmgIR0BpIP5xiobXdX2UKGgGR8B8k1Y7q6e5aAdLX2gIR0BpIObqhUR4dX2UKGgGR8B2/bcRDkU9aAdLZWgIR0BpIa704BFNdX2UKGgGR8Bx1IIKMNtqaAdLVWgIR0BpIl0mtyPudX2UKGgGR8BwTa0a6z3RaAdLYmgIR0BpIlpj+aScdX2UKGgGR8BpSjafzz3AaAdLS2gIR0BpJEb5uZTidX2UKGgGR8BatRoEjgQ6aAdLWWgIR0BpJHvKEFnqdX2UKGgGR8BiPsQsf7rLaAdLTWgIR0BpJd03fhuPdX2UKGgGR8BzbLu1F6RhaAdLYWgIR0BpJenqFAVxdX2UKGgGR8BQTVGCqZMMaAdLQ2gIR0BpJ3MyJsO5dX2UKGgGR8BZXZRjz7MxaAdLV2gIR0BpJ7cM3IdVdX2UKGgGR8BR8+z6ab4KaAdLOGgIR0BpKbX6InBtdX2UKGgGR8BiScfms/6gaAdLXmgIR0BpKhSUC7sfdX2UKGgGR8BiiT2WY4Q0aAdLXWgIR0BpKtHvttygdX2UKGgGR8BgGHLxI8QqaAdLVGgIR0BpK9UADJU6dX2UKGgGR8B4HuSEDhcaaAdLYmgIR0BpK+89Oh0ydX2UKGgGR8BeU/4ZdfLLaAdLTWgIR0BpLJMcp9ZzdX2UKGgGR8BtiyGWUr08aAdLYWgIR0BpLbafzz3AdX2UKGgGR8BmIpeokzGhaAdLTWgIR0BpLp1vES/TdX2UKGgGR8Bzgevnr6ciaAdLcmgIR0BpMDUy57PZdX2UKGgGR8BnhNDF6zE8aAdLcmgIR0BpMOVkc0cfdX2UKGgGR8BIWAV45cTraAdLRWgIR0BpMSjYZl4DdX2UKGgGR8BjPCu4gA6uaAdLWWgIR0BpMflQuVX4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86840555b447294f104bfd354aa4e94bcc7dfdca6c3b1fb56fc1346667b49904
|
3 |
+
size 147977
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7adebfbe5bc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7adebfbe5c60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7adebfbe5d00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7adebfbe5da0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7adebfbe5e40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7adebfbe5ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7adebfbe5f80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7adebfbe6020>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7adebfbe60c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7adebfbe6160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7adebfbe6200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7adebfbe62a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7adec21934c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1740503156553081261,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrfg72CFqE/xRJcvg9ip771aPQ9/UEIPQAAAAAAAAAA0wNIPsRHeT8KN/4+jVo0v1Hd4r4AuX++AAAAAAAAAAAgaM4+kaj9PqL7MT/rkpS/3LjBvrQisb0AAAAAAAAAAPCmOT/gDNW9GwU8PyIErL6aaUW/YhANwAAAgD8AAAAAM+gMPScllj8wdS8+470Dv2DZnb6IQBC+AAAAAAAAAAAAgEa7EI2zP4qLrbzXWku+yF95vf4wkL0AAAAAAAAAAPpZlz6Q16A/NWNmP9oa7r51D/u+qs8TvgAAAAAAAAAA+qTQPg/Ap72Ta5w5n3uKvQmWqbo5NZQ+AACAPwAAAAD6hUo+bC+8P3hBtD6AD5e+SP6Vvc3qoTwAAAAAAAAAAOM6g74tah0/KiUOv5HZhr97/Bg/IYGJPgAAAAAAAAAAhtMKP0FMPz9g5Xc/l/9gv3FhAL9KMR2+AAAAAAAAAABzve89/qqTPycwHj9MkCW/mIM6vtjHRL4AAAAAAAAAAO2UbL7WhLY/IlgNv5URg74Cpk89nfOuPQAAAAAAAAAAuiFhvuj4pj2Blhw/gdS4v2tKrL9mZCW+AAAAAAAAAABANRu+EyskPwWuLb7O93W/aVHlPWNn5T0AAAAAAAAAAADM07xlq5I/Hm/9vQoZSr8jsSM9TXrRPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -1637.4,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDgu0hNdqtaMAWyUSz2MAXSUR0Bo4lLteD3/dX2UKGgGR8BV5iwOe8PGaAdLSWgIR0Bo4uTcIqsmdX2UKGgGR8Bnj8vugHu7aAdLTmgIR0Bo5C8FpwjudX2UKGgGR8BLTdtuUD+zaAdLYmgIR0Bo5xfYzzmPdX2UKGgGR8Bwiuk0rK/3aAdLUmgIR0Bo59zjm0VrdX2UKGgGR8BmOdlCkXUIaAdLTGgIR0Bo59uLrHENdX2UKGgGR8BxDg3ZPEbYaAdLPWgIR0Bo6MCxNZeSdX2UKGgGR8Ba+/Zdv864aAdLVmgIR0Bo6Lvd/J/5dX2UKGgGR8B0/UPH1e0HaAdLUWgIR0Bo6QpazNUwdX2UKGgGR8Ba+s5n13+uaAdLY2gIR0Bo6RKJ2t+1dX2UKGgGR8BgeAfW+XZ5aAdLTGgIR0Bo65bGFSKndX2UKGgGR8BKf8MEzO5baAdLgGgIR0Bo7AhOgxrSdX2UKGgGR8BouXU8V58jaAdLY2gIR0Bo7C8FpwjudX2UKGgGR8BuNqq0dBBzaAdLe2gIR0Bo7KnJkoWpdX2UKGgGR8BYr6bWmP5paAdLbmgIR0Bo7YyEcsDodX2UKGgGR8BnfA3irDIjaAdLd2gIR0Bo7vL7oB7vdX2UKGgGR8BcqWvbGm1qaAdLPGgIR0Bo70h1Tzd2dX2UKGgGR8ByM3JeVs1saAdLW2gIR0Bo73Sc9W6tdX2UKGgGR8BlerltCRfXaAdLamgIR0Bo79oexOcldX2UKGgGR8BZK8RxtHhCaAdLSmgIR0Bo8Dtb9qDcdX2UKGgGR8BfmumFajesaAdLUWgIR0Bo8z3RG+bmdX2UKGgGR8B4dMBkqc3EaAdLWGgIR0Bo8+AG0NSZdX2UKGgGR8BmoFog3cYZaAdLV2gIR0Bo87i6xxDLdX2UKGgGR8BiubWsijcmaAdLZGgIR0Bo9HTkQwsYdX2UKGgGR8Bapq0hNdqtaAdLYWgIR0Bo9S2BreqJdX2UKGgGR8BaHYGyHEdeaAdLSmgIR0Bo9fZf2K2sdX2UKGgGR8Bmg9vuPV/daAdLVGgIR0Bo9jE5yU9qdX2UKGgGR8BiCMqFyq+8aAdLUWgIR0Bo9jrxAjY7dX2UKGgGR8Blzgkona37aAdLPmgIR0Bo90GX5WRzdX2UKGgGR8BlQHVPN3W4aAdLYmgIR0Bo+Fy1eBxxdX2UKGgGR8B4KTFrEcbSaAdLXmgIR0Bo+rfR/mT1dX2UKGgGR8Bu3BuEVWS2aAdLaWgIR0Bo+rKYAsCldX2UKGgGR8BWXzRc/t6YaAdLSWgIR0Bo/IXGff4zdX2UKGgGR8BqcA91U2k0aAdLS2gIR0Bo/XfoA4n4dX2UKGgGR8BSwHOGCZndaAdLQWgIR0Bo/ZUR3/xUdX2UKGgGR8BMvKt5le4TaAdLT2gIR0Bo/dalk6LgdX2UKGgGR8Ba0VqSHM2WaAdLO2gIR0Bo/fH/95yEdX2UKGgGR8B8IgGGEf1ZaAdLcmgIR0Bo/plpXZGsdX2UKGgGR8BuNke0Xxe+aAdLc2gIR0Bo/yYoiLVGdX2UKGgGR8Bac9itq59WaAdLf2gIR0Bo/6SPluFYdX2UKGgGR8BxsUWSEDhcaAdLWmgIR0BpAZGOMl1KdX2UKGgGR8BXlMTviLl4aAdLW2gIR0BpAzrNW2gGdX2UKGgGR8BKpRf4REncaAdLemgIR0BpBD1wo9cKdX2UKGgGR8BXdxVENOM3aAdLSmgIR0BpBLZrYXfqdX2UKGgGR8BcLOVcD8tPaAdLcGgIR0BpBNPDYRNAdX2UKGgGR8BgWWCyyD7JaAdLTWgIR0BpBo4p+c6OdX2UKGgGR8BlEOYa5wwTaAdLcGgIR0BpByd8Rcu8dX2UKGgGR8BvF4eii7CjaAdLTWgIR0BpB9S619fDdX2UKGgGR8BsobW/ag27aAdLTGgIR0BpCHmxMWXUdX2UKGgGR8BwKxHDrJKbaAdLV2gIR0BpCMZHd43WdX2UKGgGR8Btk9/tpmEoaAdLSmgIR0BpCVUKiO/+dX2UKGgGR8BhnDFId2gWaAdLXWgIR0BpCzZYgaFVdX2UKGgGR8Bulqk/KQq7aAdLSWgIR0BpCzAvcrRTdX2UKGgGR8BStrROUMXraAdLP2gIR0BpC2w/xDsudX2UKGgGR8BfRYaYNRWMaAdLhmgIR0BpDHYjB2wFdX2UKGgGR8BWOaT0QK8daAdLSGgIR0BpDflnyup0dX2UKGgGR8BcKFQEZBLPaAdLgGgIR0BpDpHI6r/9dX2UKGgGR8Bu/rMotthvaAdLhmgIR0BpDv+IdlundX2UKGgGR8BKDYwZflZHaAdLQGgIR0BpD3qzJIUbdX2UKGgGR8BJhlNL127naAdLQ2gIR0BpEXAGjbi7dX2UKGgGR8BhMBaA4GUwaAdLZmgIR0BpE9BfKISEdX2UKGgGR8BlV25+YtxuaAdLeGgIR0BpE9Iy0rsjdX2UKGgGR8BmxKOvMbFTaAdLXGgIR0BpFHOKO1fFdX2UKGgGR8BXQEZzgdfcaAdLSmgIR0BpFOTLW7OFdX2UKGgGR8B1OjgzguRLaAdLWWgIR0BpFPJDE3sHdX2UKGgGR8BNzcqFyq+8aAdLQmgIR0BpFR4lhPTHdX2UKGgGR0A0olenhsInaAdLiWgIR0BpFqgmJFb3dX2UKGgGR8BhbXXXiBGyaAdLfmgIR0BpGEW69TP0dX2UKGgGR8Be0unIhhYvaAdLRmgIR0BpGK2H+IdmdX2UKGgGR8BrUgWi1y/9aAdLb2gIR0BpGe63AmAtdX2UKGgGR8BqQkY0l7dBaAdLZWgIR0BpG0zhxYJWdX2UKGgGR8BiVUE9t/FzaAdLZWgIR0BpG95Qgs9TdX2UKGgGR8Bcm3kT6BRRaAdLbGgIR0BpHX4ubqhUdX2UKGgGR8BfhbVSXMQmaAdLRGgIR0BpHl4X40uUdX2UKGgGR8BjGkEmplz2aAdLSmgIR0BpHpMJx//edX2UKGgGR8B1Es9SuQp4aAdLk2gIR0BpHt1KXfIkdX2UKGgGR8B0Byw2VE/jaAdLVmgIR0BpILFAE+xGdX2UKGgGR8B2tTttygf2aAdLcmgIR0BpIP5xiobXdX2UKGgGR8B8k1Y7q6e5aAdLX2gIR0BpIObqhUR4dX2UKGgGR8B2/bcRDkU9aAdLZWgIR0BpIa704BFNdX2UKGgGR8Bx1IIKMNtqaAdLVWgIR0BpIl0mtyPudX2UKGgGR8BwTa0a6z3RaAdLYmgIR0BpIlpj+aScdX2UKGgGR8BpSjafzz3AaAdLS2gIR0BpJEb5uZTidX2UKGgGR8BatRoEjgQ6aAdLWWgIR0BpJHvKEFnqdX2UKGgGR8BiPsQsf7rLaAdLTWgIR0BpJd03fhuPdX2UKGgGR8BzbLu1F6RhaAdLYWgIR0BpJenqFAVxdX2UKGgGR8BQTVGCqZMMaAdLQ2gIR0BpJ3MyJsO5dX2UKGgGR8BZXZRjz7MxaAdLV2gIR0BpJ7cM3IdVdX2UKGgGR8BR8+z6ab4KaAdLOGgIR0BpKbX6InBtdX2UKGgGR8BiScfms/6gaAdLXmgIR0BpKhSUC7sfdX2UKGgGR8BiiT2WY4Q0aAdLXWgIR0BpKtHvttygdX2UKGgGR8BgGHLxI8QqaAdLVGgIR0BpK9UADJU6dX2UKGgGR8B4HuSEDhcaaAdLYmgIR0BpK+89Oh0ydX2UKGgGR8BeU/4ZdfLLaAdLTWgIR0BpLJMcp9ZzdX2UKGgGR8BtiyGWUr08aAdLYWgIR0BpLbafzz3AdX2UKGgGR8BmIpeokzGhaAdLTWgIR0BpLp1vES/TdX2UKGgGR8Bzgevnr6ciaAdLcmgIR0BpMDUy57PZdX2UKGgGR8BnhNDF6zE8aAdLcmgIR0BpMOVkc0cfdX2UKGgGR8BIWAV45cTraAdLRWgIR0BpMSjYZl4DdX2UKGgGR8BjPCu4gA6uaAdLWWgIR0BpMflQuVX4dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10a3146c8451dc67e29ff00d494f188da0f6fdd2d9fc879133f204ad7a96177e
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8822e8c07d1f2b6259c40ce80a0b64b0e9edf21181e5cfa43df2248b8882693c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8df8d3e8e0d90a43cb9f4187799edb6d95458b9c925f802f86b678a3eb3b402
|
3 |
+
size 128581
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -439.40356483524664, "std_reward": 806.3173263714175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-25T17:17:16.854284"}
|