Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
language: en
|
| 3 |
license: apache-2.0
|
|
@@ -6,18 +7,17 @@ tags:
|
|
| 6 |
- sentiment-analysis
|
| 7 |
- modernbert
|
| 8 |
- financial-nlp
|
| 9 |
-
- unsloth
|
| 10 |
datasets:
|
| 11 |
- neoyipeng/financial_reasoning_aggregated
|
| 12 |
metrics:
|
| 13 |
- accuracy
|
| 14 |
widget:
|
| 15 |
-
- text: The company reported strong quarterly earnings with revenue beating expectations.
|
| 16 |
-
example_title: Positive Example
|
| 17 |
-
- text: Stock prices fell sharply following disappointing guidance from management.
|
| 18 |
-
example_title: Negative Example
|
| 19 |
-
- text: The merger is expected to close in Q3 pending regulatory approval.
|
| 20 |
-
example_title: Neutral Example
|
| 21 |
---
|
| 22 |
|
| 23 |
# ModernFinBERT: Financial Sentiment Analysis
|
|
@@ -28,12 +28,13 @@ ModernFinBERT is a financial sentiment analysis model based on the ModernBERT ar
|
|
| 28 |
|
| 29 |
- **Base Model**: answerdotai/ModernBERT-base
|
| 30 |
- **Task**: 3-class sentiment classification (Negative, Neutral, Positive)
|
| 31 |
-
- **Training Data**: Financial text from multiple sources (excluding FinancialPhraseBank
|
|
|
|
| 32 |
- **Parameters**: 149,607,171
|
| 33 |
|
| 34 |
## Performance
|
| 35 |
|
| 36 |
-
- **FinancialPhraseBank Accuracy**: 73.
|
| 37 |
|
| 38 |
## Usage
|
| 39 |
|
|
@@ -58,7 +59,7 @@ print(f"Sentiment: {predicted_class} ({confidence:.2f})")
|
|
| 58 |
|
| 59 |
## Training Details
|
| 60 |
|
| 61 |
-
- **Epochs**:
|
| 62 |
- **Batch Size**: 32
|
| 63 |
- **Learning Rate**: 5e-5
|
| 64 |
- **Optimizer**: AdamW
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
language: en
|
| 4 |
license: apache-2.0
|
|
|
|
| 7 |
- sentiment-analysis
|
| 8 |
- modernbert
|
| 9 |
- financial-nlp
|
|
|
|
| 10 |
datasets:
|
| 11 |
- neoyipeng/financial_reasoning_aggregated
|
| 12 |
metrics:
|
| 13 |
- accuracy
|
| 14 |
widget:
|
| 15 |
+
- text: "The company reported strong quarterly earnings with revenue beating expectations."
|
| 16 |
+
example_title: "Positive Example"
|
| 17 |
+
- text: "Stock prices fell sharply following disappointing guidance from management."
|
| 18 |
+
example_title: "Negative Example"
|
| 19 |
+
- text: "The merger is expected to close in Q3 pending regulatory approval."
|
| 20 |
+
example_title: "Neutral Example"
|
| 21 |
---
|
| 22 |
|
| 23 |
# ModernFinBERT: Financial Sentiment Analysis
|
|
|
|
| 28 |
|
| 29 |
- **Base Model**: answerdotai/ModernBERT-base
|
| 30 |
- **Task**: 3-class sentiment classification (Negative, Neutral, Positive)
|
| 31 |
+
- **Training Data**: Financial text from multiple sources (excluding FinancialPhraseBank)
|
| 32 |
+
- **Test Data**: FinancialPhraseBank
|
| 33 |
- **Parameters**: 149,607,171
|
| 34 |
|
| 35 |
## Performance
|
| 36 |
|
| 37 |
+
- **FinancialPhraseBank Accuracy**: 73.24%
|
| 38 |
|
| 39 |
## Usage
|
| 40 |
|
|
|
|
| 59 |
|
| 60 |
## Training Details
|
| 61 |
|
| 62 |
+
- **Epochs**: 5
|
| 63 |
- **Batch Size**: 32
|
| 64 |
- **Learning Rate**: 5e-5
|
| 65 |
- **Optimizer**: AdamW
|