nehalelkaref commited on
Commit
3e27fbb
·
1 Parent(s): 821200d

update: readme.md

Browse files
Files changed (1) hide show
  1. README.md +5 -29
README.md CHANGED
@@ -8,32 +8,8 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
 
38
  ## Usage (HuggingFace Transformers)
39
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
@@ -51,11 +27,11 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
8
 
9
  ---
10
 
11
+ ## SARBERT for ArabicQ2Q
12
+ This model was trained using [sentence-transformers](https://www.SBERT.net) library, it uses [ARBERT](https://huggingface.co/UBC-NLP/ARBERT) as its base for generating word embeddings which were tuned using the [Semantic Question Similarity in Arabic dataset](http://nsurl.org/2019-2/tasks/task8-semantic-question-similarity-in-arabic/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  ## Usage (HuggingFace Transformers)
15
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
 
27
 
28
 
29
  # Sentences we want sentence embeddings for
30
+ sentences = ['أين ولد أبو نواس؟ ', 'أين عاش أبو نواس؟']
31
 
32
  # Load model from HuggingFace Hub
33
+ tokenizer = AutoTokenizer.from_pretrained('nehalelkaref/SARBERT-for-ArQ2Q')
34
+ model = AutoModel.from_pretrained('nehalelkaref/SARBERT-for-ArQ2Q')
35
 
36
  # Tokenize sentences
37
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')