neel2306 commited on
Commit
97b3a37
·
verified ·
1 Parent(s): 4845e20

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: thenlper/gte-base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:10932
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Medicinal And Botanical Chemicals, Drugs, And Other Products 
14
+ sentences:
15
+ - Alkyl benzene for surfactants
16
+ - Botanical extracts for supplements
17
+ - Industrial chemicals
18
+ - source_sentence: Ball And Roller Bearings
19
+ sentences:
20
+ - Bearing races
21
+ - Dishwashing liquid
22
+ - Bearing walls
23
+ - source_sentence: Scientific Time Keeping Device
24
+ sentences:
25
+ - Digital wristwatches
26
+ - Quartz crystals
27
+ - Natural rubber for tires
28
+ - source_sentence: Miscellaneous Electrical Industrial Apparatus
29
+ sentences:
30
+ - Consumer electronics
31
+ - Stainless steel hollow sections
32
+ - Industrial circuit breakers
33
+ - source_sentence: Mineral Fuels, Lubricants Etc.
34
+ sentences:
35
+ - Coal
36
+ - Logistics costs for machinery distribution
37
+ - Crude oil
38
+ ---
39
+
40
+ # SentenceTransformer based on thenlper/gte-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("neel2306/gte-cp-base")
88
+ # Run inference
89
+ sentences = [
90
+ 'Mineral Fuels, Lubricants Etc.',
91
+ 'Crude oil',
92
+ 'Coal',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 10,932 training samples
148
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | anchor | positive | negative |
151
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
152
+ | type | string | string | string |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.91 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.05 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.08 tokens</li><li>max: 14 tokens</li></ul> |
154
+ * Samples:
155
+ | anchor | positive | negative |
156
+ |:-----------------------------------------------------------------------------------------------------------|:----------------------------------------|:-----------------------------------|
157
+ | <code>Clay Floor And Wall Tile, Glazed And Unglazed (Including Quarry Tile And Ceramic Mosaic Tile)</code> | <code>Ceramic mosaic tiles</code> | <code>Natural stone tiles</code> |
158
+ | <code>Electrical Relay/Conductor</code> | <code>Relay switches</code> | <code>Electrical insulators</code> |
159
+ | <code>Plasterer (Kelowna, British Columbia 5 13) (Union Rate)</code> | <code>Labor costs for plasterers</code> | <code>Painting supplies</code> |
160
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
161
+ ```json
162
+ {
163
+ "scale": 20.0,
164
+ "similarity_fct": "cos_sim"
165
+ }
166
+ ```
167
+
168
+ ### Evaluation Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+
173
+ * Size: 2,733 evaluation samples
174
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
175
+ * Approximate statistics based on the first 1000 samples:
176
+ | | anchor | positive | negative |
177
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
178
+ | type | string | string | string |
179
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.09 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.06 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.95 tokens</li><li>max: 14 tokens</li></ul> |
180
+ * Samples:
181
+ | anchor | positive | negative |
182
+ |:------------------------------------------------------------|:---------------------------------------------|:------------------------------|
183
+ | <code>Asphalt Paving Mixture and Block Manufacturing</code> | <code>Recycled asphalt pavement (RAP)</code> | <code>Asphalt shingles</code> |
184
+ | <code>Air Conditioning Plant</code> | <code>Refrigerant gases</code> | <code>Heating elements</code> |
185
+ | <code>Oak Lumber</code> | <code>Oak plywood</code> | <code>Pine lumber</code> |
186
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
187
+ ```json
188
+ {
189
+ "scale": 20.0,
190
+ "similarity_fct": "cos_sim"
191
+ }
192
+ ```
193
+
194
+ ### Training Hyperparameters
195
+ #### Non-Default Hyperparameters
196
+
197
+ - `eval_strategy`: steps
198
+ - `per_device_train_batch_size`: 16
199
+ - `per_device_eval_batch_size`: 16
200
+ - `learning_rate`: 6e-05
201
+ - `num_train_epochs`: 10
202
+ - `warmup_ratio`: 0.1
203
+ - `optim`: adamw_hf
204
+ - `batch_sampler`: no_duplicates
205
+
206
+ #### All Hyperparameters
207
+ <details><summary>Click to expand</summary>
208
+
209
+ - `overwrite_output_dir`: False
210
+ - `do_predict`: False
211
+ - `eval_strategy`: steps
212
+ - `prediction_loss_only`: True
213
+ - `per_device_train_batch_size`: 16
214
+ - `per_device_eval_batch_size`: 16
215
+ - `per_gpu_train_batch_size`: None
216
+ - `per_gpu_eval_batch_size`: None
217
+ - `gradient_accumulation_steps`: 1
218
+ - `eval_accumulation_steps`: None
219
+ - `torch_empty_cache_steps`: None
220
+ - `learning_rate`: 6e-05
221
+ - `weight_decay`: 0
222
+ - `adam_beta1`: 0.9
223
+ - `adam_beta2`: 0.999
224
+ - `adam_epsilon`: 1e-08
225
+ - `max_grad_norm`: 1.0
226
+ - `num_train_epochs`: 10
227
+ - `max_steps`: -1
228
+ - `lr_scheduler_type`: linear
229
+ - `lr_scheduler_kwargs`: {}
230
+ - `warmup_ratio`: 0.1
231
+ - `warmup_steps`: 0
232
+ - `log_level`: passive
233
+ - `log_level_replica`: warning
234
+ - `log_on_each_node`: True
235
+ - `logging_nan_inf_filter`: True
236
+ - `save_safetensors`: True
237
+ - `save_on_each_node`: False
238
+ - `save_only_model`: False
239
+ - `restore_callback_states_from_checkpoint`: False
240
+ - `no_cuda`: False
241
+ - `use_cpu`: False
242
+ - `use_mps_device`: False
243
+ - `seed`: 42
244
+ - `data_seed`: None
245
+ - `jit_mode_eval`: False
246
+ - `use_ipex`: False
247
+ - `bf16`: False
248
+ - `fp16`: False
249
+ - `fp16_opt_level`: O1
250
+ - `half_precision_backend`: auto
251
+ - `bf16_full_eval`: False
252
+ - `fp16_full_eval`: False
253
+ - `tf32`: None
254
+ - `local_rank`: 0
255
+ - `ddp_backend`: None
256
+ - `tpu_num_cores`: None
257
+ - `tpu_metrics_debug`: False
258
+ - `debug`: []
259
+ - `dataloader_drop_last`: False
260
+ - `dataloader_num_workers`: 0
261
+ - `dataloader_prefetch_factor`: None
262
+ - `past_index`: -1
263
+ - `disable_tqdm`: False
264
+ - `remove_unused_columns`: True
265
+ - `label_names`: None
266
+ - `load_best_model_at_end`: False
267
+ - `ignore_data_skip`: False
268
+ - `fsdp`: []
269
+ - `fsdp_min_num_params`: 0
270
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
271
+ - `fsdp_transformer_layer_cls_to_wrap`: None
272
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
273
+ - `deepspeed`: None
274
+ - `label_smoothing_factor`: 0.0
275
+ - `optim`: adamw_hf
276
+ - `optim_args`: None
277
+ - `adafactor`: False
278
+ - `group_by_length`: False
279
+ - `length_column_name`: length
280
+ - `ddp_find_unused_parameters`: None
281
+ - `ddp_bucket_cap_mb`: None
282
+ - `ddp_broadcast_buffers`: False
283
+ - `dataloader_pin_memory`: True
284
+ - `dataloader_persistent_workers`: False
285
+ - `skip_memory_metrics`: True
286
+ - `use_legacy_prediction_loop`: False
287
+ - `push_to_hub`: False
288
+ - `resume_from_checkpoint`: None
289
+ - `hub_model_id`: None
290
+ - `hub_strategy`: every_save
291
+ - `hub_private_repo`: False
292
+ - `hub_always_push`: False
293
+ - `gradient_checkpointing`: False
294
+ - `gradient_checkpointing_kwargs`: None
295
+ - `include_inputs_for_metrics`: False
296
+ - `eval_do_concat_batches`: True
297
+ - `fp16_backend`: auto
298
+ - `push_to_hub_model_id`: None
299
+ - `push_to_hub_organization`: None
300
+ - `mp_parameters`:
301
+ - `auto_find_batch_size`: False
302
+ - `full_determinism`: False
303
+ - `torchdynamo`: None
304
+ - `ray_scope`: last
305
+ - `ddp_timeout`: 1800
306
+ - `torch_compile`: False
307
+ - `torch_compile_backend`: None
308
+ - `torch_compile_mode`: None
309
+ - `dispatch_batches`: None
310
+ - `split_batches`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `eval_use_gather_object`: False
318
+ - `batch_sampler`: no_duplicates
319
+ - `multi_dataset_batch_sampler`: proportional
320
+
321
+ </details>
322
+
323
+ ### Training Logs
324
+ <details><summary>Click to expand</summary>
325
+
326
+ | Epoch | Step | Training Loss | loss |
327
+ |:------:|:----:|:-------------:|:------:|
328
+ | 0.0731 | 50 | 1.9026 | 1.5169 |
329
+ | 0.1462 | 100 | 1.5479 | 1.0813 |
330
+ | 0.2193 | 150 | 1.0239 | 0.7291 |
331
+ | 0.2924 | 200 | 0.6914 | 0.6372 |
332
+ | 0.3655 | 250 | 0.653 | 0.5887 |
333
+ | 0.4386 | 300 | 0.5469 | 0.5605 |
334
+ | 0.5117 | 350 | 0.5312 | 0.5408 |
335
+ | 0.5848 | 400 | 0.4996 | 0.5100 |
336
+ | 0.6579 | 450 | 0.4445 | 0.4830 |
337
+ | 0.7310 | 500 | 0.5092 | 0.4734 |
338
+ | 0.8041 | 550 | 0.532 | 0.4476 |
339
+ | 0.8772 | 600 | 0.4147 | 0.4714 |
340
+ | 0.9503 | 650 | 0.477 | 0.4400 |
341
+ | 1.0234 | 700 | 0.4243 | 0.4466 |
342
+ | 1.0965 | 750 | 0.485 | 0.4172 |
343
+ | 1.1696 | 800 | 0.3717 | 0.4271 |
344
+ | 1.2427 | 850 | 0.3716 | 0.4369 |
345
+ | 1.3158 | 900 | 0.3742 | 0.4104 |
346
+ | 1.3889 | 950 | 0.3157 | 0.4436 |
347
+ | 1.4620 | 1000 | 0.3035 | 0.4444 |
348
+ | 1.5351 | 1050 | 0.2797 | 0.4558 |
349
+ | 1.6082 | 1100 | 0.2639 | 0.4248 |
350
+ | 1.6813 | 1150 | 0.2286 | 0.4308 |
351
+ | 1.7544 | 1200 | 0.2753 | 0.4098 |
352
+ | 1.8275 | 1250 | 0.1904 | 0.4415 |
353
+ | 1.9006 | 1300 | 0.2175 | 0.4503 |
354
+ | 1.9737 | 1350 | 0.1806 | 0.4245 |
355
+ | 2.0468 | 1400 | 0.1826 | 0.4418 |
356
+ | 2.1199 | 1450 | 0.1952 | 0.4138 |
357
+ | 2.1930 | 1500 | 0.1612 | 0.4061 |
358
+ | 2.2661 | 1550 | 0.1604 | 0.3910 |
359
+ | 2.3392 | 1600 | 0.1199 | 0.3852 |
360
+ | 2.4123 | 1650 | 0.1439 | 0.4082 |
361
+ | 2.4854 | 1700 | 0.1402 | 0.4352 |
362
+ | 2.5585 | 1750 | 0.1116 | 0.4338 |
363
+ | 2.6316 | 1800 | 0.1113 | 0.4189 |
364
+ | 2.7047 | 1850 | 0.1159 | 0.4013 |
365
+ | 2.7778 | 1900 | 0.1241 | 0.3853 |
366
+ | 2.8509 | 1950 | 0.0977 | 0.3919 |
367
+ | 2.9240 | 2000 | 0.0953 | 0.4022 |
368
+ | 2.9971 | 2050 | 0.1159 | 0.4073 |
369
+ | 3.0702 | 2100 | 0.0923 | 0.3903 |
370
+ | 3.1433 | 2150 | 0.0958 | 0.3833 |
371
+ | 3.2164 | 2200 | 0.0787 | 0.3875 |
372
+ | 3.2895 | 2250 | 0.083 | 0.3807 |
373
+ | 3.3626 | 2300 | 0.0714 | 0.3806 |
374
+ | 3.4357 | 2350 | 0.0748 | 0.3997 |
375
+ | 3.5088 | 2400 | 0.0779 | 0.4027 |
376
+ | 3.5819 | 2450 | 0.0709 | 0.3921 |
377
+ | 3.6550 | 2500 | 0.0482 | 0.3905 |
378
+ | 3.7281 | 2550 | 0.0784 | 0.3760 |
379
+ | 3.8012 | 2600 | 0.0694 | 0.3809 |
380
+ | 3.8743 | 2650 | 0.0725 | 0.3957 |
381
+ | 3.9474 | 2700 | 0.0718 | 0.3897 |
382
+ | 4.0205 | 2750 | 0.05 | 0.3894 |
383
+ | 4.0936 | 2800 | 0.0597 | 0.4014 |
384
+ | 4.1667 | 2850 | 0.0445 | 0.3929 |
385
+ | 4.2398 | 2900 | 0.039 | 0.3856 |
386
+ | 4.3129 | 2950 | 0.0405 | 0.3723 |
387
+ | 4.3860 | 3000 | 0.0456 | 0.3764 |
388
+ | 4.4591 | 3050 | 0.0493 | 0.3876 |
389
+ | 4.5322 | 3100 | 0.036 | 0.3866 |
390
+ | 4.6053 | 3150 | 0.0517 | 0.3791 |
391
+ | 4.6784 | 3200 | 0.0383 | 0.3724 |
392
+ | 4.7515 | 3250 | 0.0453 | 0.3886 |
393
+ | 4.8246 | 3300 | 0.0469 | 0.3897 |
394
+ | 4.8977 | 3350 | 0.0385 | 0.3940 |
395
+ | 4.9708 | 3400 | 0.0427 | 0.3877 |
396
+ | 5.0439 | 3450 | 0.0212 | 0.3914 |
397
+ | 5.1170 | 3500 | 0.0452 | 0.3899 |
398
+ | 5.1901 | 3550 | 0.0252 | 0.3925 |
399
+ | 5.2632 | 3600 | 0.0228 | 0.3895 |
400
+ | 5.3363 | 3650 | 0.0219 | 0.3792 |
401
+ | 5.4094 | 3700 | 0.0275 | 0.3882 |
402
+ | 5.4825 | 3750 | 0.0246 | 0.3892 |
403
+ | 5.5556 | 3800 | 0.0226 | 0.3895 |
404
+ | 5.6287 | 3850 | 0.0219 | 0.3912 |
405
+ | 5.7018 | 3900 | 0.027 | 0.3800 |
406
+ | 5.7749 | 3950 | 0.0268 | 0.3667 |
407
+ | 5.8480 | 4000 | 0.0313 | 0.3687 |
408
+ | 5.9211 | 4050 | 0.0233 | 0.3675 |
409
+ | 5.9942 | 4100 | 0.0201 | 0.3649 |
410
+ | 6.0673 | 4150 | 0.0207 | 0.3727 |
411
+ | 6.1404 | 4200 | 0.0175 | 0.3802 |
412
+ | 6.2135 | 4250 | 0.0117 | 0.3760 |
413
+ | 6.2865 | 4300 | 0.0124 | 0.3731 |
414
+ | 6.3596 | 4350 | 0.0164 | 0.3713 |
415
+ | 6.4327 | 4400 | 0.0149 | 0.3782 |
416
+ | 6.5058 | 4450 | 0.0127 | 0.3747 |
417
+ | 6.5789 | 4500 | 0.013 | 0.3746 |
418
+ | 6.6520 | 4550 | 0.0078 | 0.3756 |
419
+ | 6.7251 | 4600 | 0.0171 | 0.3741 |
420
+ | 6.7982 | 4650 | 0.0211 | 0.3680 |
421
+ | 6.8713 | 4700 | 0.0186 | 0.3686 |
422
+ | 6.9444 | 4750 | 0.0213 | 0.3688 |
423
+ | 7.0175 | 4800 | 0.0107 | 0.3647 |
424
+ | 7.0906 | 4850 | 0.011 | 0.3677 |
425
+ | 7.1637 | 4900 | 0.0098 | 0.3671 |
426
+ | 7.2368 | 4950 | 0.0091 | 0.3708 |
427
+ | 7.3099 | 5000 | 0.0074 | 0.3673 |
428
+ | 7.3830 | 5050 | 0.0101 | 0.3672 |
429
+ | 7.4561 | 5100 | 0.0115 | 0.3676 |
430
+ | 7.5292 | 5150 | 0.0054 | 0.3656 |
431
+ | 7.6023 | 5200 | 0.0076 | 0.3657 |
432
+ | 7.6754 | 5250 | 0.0054 | 0.3639 |
433
+ | 7.7485 | 5300 | 0.0115 | 0.3600 |
434
+ | 7.8216 | 5350 | 0.0105 | 0.3657 |
435
+ | 7.8947 | 5400 | 0.0175 | 0.3649 |
436
+ | 7.9678 | 5450 | 0.0091 | 0.3634 |
437
+ | 8.0409 | 5500 | 0.0043 | 0.3646 |
438
+ | 8.1140 | 5550 | 0.0078 | 0.3650 |
439
+ | 8.1871 | 5600 | 0.004 | 0.3683 |
440
+ | 8.2602 | 5650 | 0.0045 | 0.3669 |
441
+ | 8.3333 | 5700 | 0.005 | 0.3661 |
442
+ | 8.4064 | 5750 | 0.0074 | 0.3652 |
443
+ | 8.4795 | 5800 | 0.0042 | 0.3662 |
444
+ | 8.5526 | 5850 | 0.0039 | 0.3696 |
445
+ | 8.6257 | 5900 | 0.004 | 0.3724 |
446
+ | 8.6988 | 5950 | 0.008 | 0.3714 |
447
+ | 8.7719 | 6000 | 0.0057 | 0.3711 |
448
+ | 8.8450 | 6050 | 0.0045 | 0.3702 |
449
+ | 8.9181 | 6100 | 0.0122 | 0.3715 |
450
+ | 8.9912 | 6150 | 0.0064 | 0.3703 |
451
+ | 9.0643 | 6200 | 0.0039 | 0.3689 |
452
+ | 9.1374 | 6250 | 0.0034 | 0.3680 |
453
+ | 9.2105 | 6300 | 0.0022 | 0.3680 |
454
+ | 9.2836 | 6350 | 0.0021 | 0.3684 |
455
+ | 9.3567 | 6400 | 0.0025 | 0.3685 |
456
+ | 9.4298 | 6450 | 0.0041 | 0.3679 |
457
+ | 9.5029 | 6500 | 0.0018 | 0.3679 |
458
+ | 9.5760 | 6550 | 0.0039 | 0.3686 |
459
+ | 9.6491 | 6600 | 0.0021 | 0.3691 |
460
+ | 9.7222 | 6650 | 0.0056 | 0.3689 |
461
+ | 9.7953 | 6700 | 0.0025 | 0.3691 |
462
+ | 9.8684 | 6750 | 0.0063 | 0.3692 |
463
+ | 9.9415 | 6800 | 0.0074 | 0.3692 |
464
+
465
+ </details>
466
+
467
+ ### Framework Versions
468
+ - Python: 3.12.6
469
+ - Sentence Transformers: 3.1.0
470
+ - Transformers: 4.44.2
471
+ - PyTorch: 2.4.1+cpu
472
+ - Accelerate: 0.34.2
473
+ - Datasets: 3.0.0
474
+ - Tokenizers: 0.19.1
475
+
476
+ ## Citation
477
+
478
+ ### BibTeX
479
+
480
+ #### Sentence Transformers
481
+ ```bibtex
482
+ @inproceedings{reimers-2019-sentence-bert,
483
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
484
+ author = "Reimers, Nils and Gurevych, Iryna",
485
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
486
+ month = "11",
487
+ year = "2019",
488
+ publisher = "Association for Computational Linguistics",
489
+ url = "https://arxiv.org/abs/1908.10084",
490
+ }
491
+ ```
492
+
493
+ #### MultipleNegativesRankingLoss
494
+ ```bibtex
495
+ @misc{henderson2017efficient,
496
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
497
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
498
+ year={2017},
499
+ eprint={1705.00652},
500
+ archivePrefix={arXiv},
501
+ primaryClass={cs.CL}
502
+ }
503
+ ```
504
+
505
+ <!--
506
+ ## Glossary
507
+
508
+ *Clearly define terms in order to be accessible across audiences.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Authors
513
+
514
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
515
+ -->
516
+
517
+ <!--
518
+ ## Model Card Contact
519
+
520
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
521
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/gte-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803910a5a6ec3b7a374a44f68e3cbf8f0c11c26b2acc1b6668f101086dddc825
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff