Commit
·
1bae9a8
1
Parent(s):
1ade35e
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1688.28 +/- 92.92
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69c2bc2b61431044a7d0dea7d149e8b6a775349c6ba08a1ba80892c10d35ef9a
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4ab0dcd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4ab0dcdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4ab0dce50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4ab0dcee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd4ab0dcf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd4ab0df040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4ab0df0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4ab0df160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd4ab0df1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4ab0df280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4ab0df310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4ab0df3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd4b47ef540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 1500000,
|
36 |
+
"_total_timesteps": 1500000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1682304802150863805,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAoKpz8GZm8/7TfsvtDZgz+CUZ4/Z1IHwN6Jlj94vcG+lTsTv+IaUb6XbUC+onqqPgp6nT9V33m/cWcOv63OCj/4PtC+C4EWPpdNrT4/YqS+A4iDv4xKZT8U3uK+GdMUwOD0db83Hty/Z4q2PhVyKD/PNq8+5u6RP25jcb/f8E8+JDQxPpszzL7cDxu+YaZkPZKflL/hhay/C8eYP6QKsj4AK62/N4glPoOyAr+xovW+zZhSvfkYab0hoza+KTJoP4TTwj9PAsQ68tumv+hEDz4POoU/l90UP2eKtj4WiMK/O7DuvizRiT9G+kW/8HteP4KnTT9QGrQ/hpeFP3mYJz30GjY+IUYvwGvEJT91xOK/V0dLv2xRcT6b6Ym/8bmHvN/e276Axuu/WTVKP8BsAD0qa40/tQazv7frj7545jU/4PR1v5fdFD9nirY+FXIoP8eNEb8i9IA/TnQcv4Gqer6JDmM/JIiWPoADsD+0I2c/0qLdPvk4OsDmYpU/E+kRPxLqj7+L8KTAvsXFvv67Vr2goUM/pJAHwI/QTD+yh9G95EzGPxdRY74Z+q2/ma6MPQ86hT83Hty/Z4q2PhaIwr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVY5u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6Xv4PQAAAAC2Qfa/AAAAAGe2sr0AAAAAkEvgPwAAAACGOpY9AAAAAOX05D8AAAAA0zWnvQAAAABvD/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFTnQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN29970AAAAA4NH0vwAAAABhveU9AAAAAJYO2T8AAAAAOGGlvAAAAACXl/o/AAAAAElnNL0AAAAAaRzwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZ0TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWnXa9AAAAANCN7r8AAAAAVzLnPAAAAABHZds/AAAAAGIT4zsAAAAAo83mPwAAAAAKqfk8AAAAADz05b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADe8Ec2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGvCaOwAAAACe6vW/AAAAAK0mDj0AAAAA/kAAQAAAAAClySA9AAAAAEuA3T8AAAAAsoJ7vQAAAAC+Xtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpUHiKiwjeMAWyUTegDjAF0lEdAo9eUXtShrXV9lChoBkdAmezBIBikPGgHTegDaAhHQKPX3FfAsTZ1fZQoaAZHQJl1rIo3JgdoB03oA2gIR0Cj3GTbWVeKdX2UKGgGR0CbCGmig00naAdN6ANoCEdAo99VJtix3XV9lChoBkdAmkfesHSncmgHTegDaAhHQKPjS5PuXu51fZQoaAZHQJsn5TJhfBxoB03oA2gIR0Cj44992HLzdX2UKGgGR0Cb2cOymhugaAdN6ANoCEdAo+gUju8brHV9lChoBkdAm46Xp4bCJ2gHTegDaAhHQKPsE1m8M/h1fZQoaAZHQJtPdle4TbpoB03oA2gIR0Cj8e8yFfzCdX2UKGgGR0Cc5rdmxt52aAdN6ANoCEdAo/IzyMDOknV9lChoBkdAnRDUbYK6WmgHTegDaAhHQKP21d69kBl1fZQoaAZHQJ1A+2qkuYhoB03oA2gIR0Cj+d96Tnq3dX2UKGgGR0Ccj38L8aXKaAdN6ANoCEdAo/3cKLKmsXV9lChoBkdAm5WyGBWge2gHTegDaAhHQKP+IEVWS2Z1fZQoaAZHQJmpDL9uP3loB03oA2gIR0CkApgmqo60dX2UKGgGR0CbW8ebutwKaAdN6ANoCEdApAWyr5qM33V9lChoBkdAmp504JeE7GgHTegDaAhHQKQL07CBPKx1fZQoaAZHQJvM5WS2Yv5oB03oA2gIR0CkDD5TQ3PzdX2UKGgGR0CaczcWCVbBaAdN6ANoCEdApBFhB3RoiHV9lChoBkdAlIjFlbu+iGgHTegDaAhHQKQUSLqlgtx1fZQoaAZHQJFyTv1DjR5oB03oA2gIR0CkGGlPJq7AdX2UKGgGR0CXP4tsvZh8aAdN6ANoCEdApBitTxXnyXV9lChoBkdAl4Pzl90A92gHTegDaAhHQKQdOGKyfL91fZQoaAZHQJX9amhufmNoB03oA2gIR0CkICFl05lwdX2UKGgGR0CScqALiMo+aAdN6ANoCEdApCVBrtVrAXV9lChoBkdAlXXuKO1fFGgHTegDaAhHQKQlrTa0x/N1fZQoaAZHQJcYl1FH8TBoB03oA2gIR0CkK9fFBIFvdX2UKGgGR0CbF5xnnMdMaAdN6ANoCEdApC7Mhib2DnV9lChoBkdAl9YDQeFL4GgHTegDaAhHQKQyyoBJZnt1fZQoaAZHQJohBA/s3Q5oB03oA2gIR0CkMw21twaSdX2UKGgGR0CVs0jps41haAdN6ANoCEdApDe2mWMS9XV9lChoBkdAlqniq2jO9mgHTegDaAhHQKQ6pIH1OCZ1fZQoaAZHQJk0RWuHN5doB03oA2gIR0CkPrz90ihWdX2UKGgGR0CKj65ksjFAaAdN6ANoCEdApD8nmV7hN3V9lChoBkdAkaeAlByCF2gHTegDaAhHQKRGPL0z0pV1fZQoaAZHQI7DFbxEv01oB03oA2gIR0CkSXY/NZ/1dX2UKGgGR0CD5xb8m8dxaAdN6ANoCEdApE1zXlKbrnV9lChoBkdAhWHLPMSsbWgHTegDaAhHQKRNuClJpWV1fZQoaAZHQIdPRScbzbxoB03oA2gIR0CkUi+717IDdX2UKGgGR0CV94/sE7nxaAdN6ANoCEdApFU3ZIxxk3V9lChoBkdAlgvvIXCTEGgHTegDaAhHQKRZRJfYzzp1fZQoaAZHQJY1KlQ/HHZoB03oA2gIR0CkWYZzHS4OdX2UKGgGR0CUmUvWpZOjaAdN6ANoCEdApF+nu1F6RnV9lChoBkdAlXktl/Yra2gHTegDaAhHQKRj56u4gA91fZQoaAZHQIeLu63AmAtoB03oA2gIR0CkZ+fRVp9JdX2UKGgGR0CN4/sVLzwuaAdN6ANoCEdApGgrCSA6MnV9lChoBkdAk2/2nGbTdGgHTegDaAhHQKRsx5k9U0h1fZQoaAZHQImCnp+tr9FoB03oA2gIR0Ckb8bmuDBedX2UKGgGR0CQdZLa24NJaAdN6ANoCEdApHPnJxNqQHV9lChoBkdAgHkjs+mm+GgHTegDaAhHQKR0LOUMXrN1fZQoaAZHQIGBH8MuvlloB03oA2gIR0CkeXnmRvFWdX2UKGgGR0CCPxaQmu1XaAdN6ANoCEdApH4nEwWWQnV9lChoBkdAg7kBn8Koh2gHTegDaAhHQKSCxvBJqZd1fZQoaAZHQIed0Ft8/lhoB03oA2gIR0Ckgw4hEBsAdX2UKGgGR0CEt+1Vo6CEaAdN6ANoCEdApIfVIGyHEnV9lChoBkdAh9JkNOM2nGgHTegDaAhHQKSKwAiFCcB1fZQoaAZHQIGksJ2MbWFoB03oA2gIR0CkjsnuiN83dX2UKGgGR0CGlzUqhDgJaAdN6ANoCEdApI8PmNipenV9lChoBkdAhVM6XKKYRmgHTegDaAhHQKSTnygf2bp1fZQoaAZHQIsg6ufVZs9oB03oA2gIR0Ckl+JTVDrrdX2UKGgGR0CSvxEdeY2LaAdN6ANoCEdApJ2PU4JeFHV9lChoBkdAgHwtyYG+smgHTegDaAhHQKSd1b/wRXh1fZQoaAZHQIh/BGBnSORoB03oA2gIR0CkomIC+10DdX2UKGgGR0CGSZtkWhysaAdN6ANoCEdApKVmJemelXV9lChoBkdAkglIdyT6i2gHTegDaAhHQKSpiWLP2PF1fZQoaAZHQH1lO89Oh01oB03oA2gIR0Ckqc6zNUwSdX2UKGgGR0CG+lxXGOuJaAdN6ANoCEdApK6IpYs/ZHV9lChoBkdAhc3kU9IPLGgHTegDaAhHQKSx8XiR4hV1fZQoaAZHQJHbmwbEP2BoB03oA2gIR0CkuAbtJFspdX2UKGgGR0CShAQK8cuKaAdN6ANoCEdApLhwwVTJhnV9lChoBkdAkdcMeGO+7GgHTegDaAhHQKS9OdRzijt1fZQoaAZHQI86yT4cm0FoB03oA2gIR0CkwCA5R0lrdX2UKGgGR0CTn6f/WDpUaAdN6ANoCEdApMQOp++dsnV9lChoBkdAlGg3hwVCX2gHTegDaAhHQKTEUbG3nZF1fZQoaAZHQJXKuaDwpfBoB03oA2gIR0CkyLy/bj95dX2UKGgGR0CXd0bnoxHoaAdN6ANoCEdApMugXl8w6HV9lChoBkdAlsDV0PpY92gHTegDaAhHQKTQ4uvllsh1fZQoaAZHQJaDawQlKK5oB03oA2gIR0Ck0Uzi0fHQdX2UKGgGR0CXT5vIfbKzaAdN6ANoCEdApNc2FpPAPHV9lChoBkdAlfJLns9jgGgHTegDaAhHQKTaL/e+Eh91fZQoaAZHQIY0z7wazeJoB03oA2gIR0Ck3jXTNMXadX2UKGgGR0CG+luBtk4FaAdN6ANoCEdApN56fvnbI3V9lChoBkdAk4SqisXBQGgHTegDaAhHQKTi8y44Ia91fZQoaAZHQI2HjCcf/3poB03oA2gIR0Ck5fCYLLIQdX2UKGgGR0CC8b3r2QGOaAdN6ANoCEdApOorlzU7S3V9lChoBkdAkROx2nsLOWgHTegDaAhHQKTqllV94NZ1fZQoaAZHQJLEqONo8IRoB03oA2gIR0Ck8XiN0eU7dX2UKGgGR0CV5/MewLVnaAdN6ANoCEdApPSFCRfWtnV9lChoBkdAlEm7leWv82gHTegDaAhHQKT4kqEvkBF1fZQoaAZHQJSxVGAkLQZoB03oA2gIR0Ck+NUe2d/bdX2UKGgGR0CWpx6ErXlKaAdN6ANoCEdApP09sWO6unV9lChoBkdAli/d3GGVRmgHTegDaAhHQKUAHj3Ehq11fZQoaAZHQJeCYvxpcopoB03oA2gIR0ClBAvHDJlrdX2UKGgGR0CU7/NvwVj7aAdN6ANoCEdApQRTCUHIIXV9lChoBkdAlg1Mq8UVSGgHTegDaAhHQKUKKlzltCR1fZQoaAZHQJmG65e7cwhoB03oA2gIR0ClDq6c7QsxdX2UKGgGR0CV7QeWfK6naAdN6ANoCEdApRKqQA+6iHV9lChoBkdAmNLCnpB5X2gHTegDaAhHQKUS7ozvZyx1fZQoaAZHQJous3m3fANoB03oA2gIR0ClF3iYsunNdX2UKGgGR0CXzaY9xIataAdN6ANoCEdApRplLOAy23VlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 46875,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fdf57f19c9a3ecfd67167bf54219b89f9f31faa60d2442b41886ea9b81c0603
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c79e05aeabd68a259dea72a1c9bf9fe30d34d8742161034c4b424523ea5125dd
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4ab0dcd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4ab0dcdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4ab0dce50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4ab0dcee0>", "_build": "<function ActorCriticPolicy._build at 0x7fd4ab0dcf70>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4ab0df040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4ab0df0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4ab0df160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4ab0df1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4ab0df280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4ab0df310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4ab0df3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4b47ef540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682304802150863805, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAoKpz8GZm8/7TfsvtDZgz+CUZ4/Z1IHwN6Jlj94vcG+lTsTv+IaUb6XbUC+onqqPgp6nT9V33m/cWcOv63OCj/4PtC+C4EWPpdNrT4/YqS+A4iDv4xKZT8U3uK+GdMUwOD0db83Hty/Z4q2PhVyKD/PNq8+5u6RP25jcb/f8E8+JDQxPpszzL7cDxu+YaZkPZKflL/hhay/C8eYP6QKsj4AK62/N4glPoOyAr+xovW+zZhSvfkYab0hoza+KTJoP4TTwj9PAsQ68tumv+hEDz4POoU/l90UP2eKtj4WiMK/O7DuvizRiT9G+kW/8HteP4KnTT9QGrQ/hpeFP3mYJz30GjY+IUYvwGvEJT91xOK/V0dLv2xRcT6b6Ym/8bmHvN/e276Axuu/WTVKP8BsAD0qa40/tQazv7frj7545jU/4PR1v5fdFD9nirY+FXIoP8eNEb8i9IA/TnQcv4Gqer6JDmM/JIiWPoADsD+0I2c/0qLdPvk4OsDmYpU/E+kRPxLqj7+L8KTAvsXFvv67Vr2goUM/pJAHwI/QTD+yh9G95EzGPxdRY74Z+q2/ma6MPQ86hT83Hty/Z4q2PhaIwr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVY5u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6Xv4PQAAAAC2Qfa/AAAAAGe2sr0AAAAAkEvgPwAAAACGOpY9AAAAAOX05D8AAAAA0zWnvQAAAABvD/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFTnQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN29970AAAAA4NH0vwAAAABhveU9AAAAAJYO2T8AAAAAOGGlvAAAAACXl/o/AAAAAElnNL0AAAAAaRzwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZ0TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWnXa9AAAAANCN7r8AAAAAVzLnPAAAAABHZds/AAAAAGIT4zsAAAAAo83mPwAAAAAKqfk8AAAAADz05b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADe8Ec2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGvCaOwAAAACe6vW/AAAAAK0mDj0AAAAA/kAAQAAAAAClySA9AAAAAEuA3T8AAAAAsoJ7vQAAAAC+Xtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpUHiKiwjeMAWyUTegDjAF0lEdAo9eUXtShrXV9lChoBkdAmezBIBikPGgHTegDaAhHQKPX3FfAsTZ1fZQoaAZHQJl1rIo3JgdoB03oA2gIR0Cj3GTbWVeKdX2UKGgGR0CbCGmig00naAdN6ANoCEdAo99VJtix3XV9lChoBkdAmkfesHSncmgHTegDaAhHQKPjS5PuXu51fZQoaAZHQJsn5TJhfBxoB03oA2gIR0Cj44992HLzdX2UKGgGR0Cb2cOymhugaAdN6ANoCEdAo+gUju8brHV9lChoBkdAm46Xp4bCJ2gHTegDaAhHQKPsE1m8M/h1fZQoaAZHQJtPdle4TbpoB03oA2gIR0Cj8e8yFfzCdX2UKGgGR0Cc5rdmxt52aAdN6ANoCEdAo/IzyMDOknV9lChoBkdAnRDUbYK6WmgHTegDaAhHQKP21d69kBl1fZQoaAZHQJ1A+2qkuYhoB03oA2gIR0Cj+d96Tnq3dX2UKGgGR0Ccj38L8aXKaAdN6ANoCEdAo/3cKLKmsXV9lChoBkdAm5WyGBWge2gHTegDaAhHQKP+IEVWS2Z1fZQoaAZHQJmpDL9uP3loB03oA2gIR0CkApgmqo60dX2UKGgGR0CbW8ebutwKaAdN6ANoCEdApAWyr5qM33V9lChoBkdAmp504JeE7GgHTegDaAhHQKQL07CBPKx1fZQoaAZHQJvM5WS2Yv5oB03oA2gIR0CkDD5TQ3PzdX2UKGgGR0CaczcWCVbBaAdN6ANoCEdApBFhB3RoiHV9lChoBkdAlIjFlbu+iGgHTegDaAhHQKQUSLqlgtx1fZQoaAZHQJFyTv1DjR5oB03oA2gIR0CkGGlPJq7AdX2UKGgGR0CXP4tsvZh8aAdN6ANoCEdApBitTxXnyXV9lChoBkdAl4Pzl90A92gHTegDaAhHQKQdOGKyfL91fZQoaAZHQJX9amhufmNoB03oA2gIR0CkICFl05lwdX2UKGgGR0CScqALiMo+aAdN6ANoCEdApCVBrtVrAXV9lChoBkdAlXXuKO1fFGgHTegDaAhHQKQlrTa0x/N1fZQoaAZHQJcYl1FH8TBoB03oA2gIR0CkK9fFBIFvdX2UKGgGR0CbF5xnnMdMaAdN6ANoCEdApC7Mhib2DnV9lChoBkdAl9YDQeFL4GgHTegDaAhHQKQyyoBJZnt1fZQoaAZHQJohBA/s3Q5oB03oA2gIR0CkMw21twaSdX2UKGgGR0CVs0jps41haAdN6ANoCEdApDe2mWMS9XV9lChoBkdAlqniq2jO9mgHTegDaAhHQKQ6pIH1OCZ1fZQoaAZHQJk0RWuHN5doB03oA2gIR0CkPrz90ihWdX2UKGgGR0CKj65ksjFAaAdN6ANoCEdApD8nmV7hN3V9lChoBkdAkaeAlByCF2gHTegDaAhHQKRGPL0z0pV1fZQoaAZHQI7DFbxEv01oB03oA2gIR0CkSXY/NZ/1dX2UKGgGR0CD5xb8m8dxaAdN6ANoCEdApE1zXlKbrnV9lChoBkdAhWHLPMSsbWgHTegDaAhHQKRNuClJpWV1fZQoaAZHQIdPRScbzbxoB03oA2gIR0CkUi+717IDdX2UKGgGR0CV94/sE7nxaAdN6ANoCEdApFU3ZIxxk3V9lChoBkdAlgvvIXCTEGgHTegDaAhHQKRZRJfYzzp1fZQoaAZHQJY1KlQ/HHZoB03oA2gIR0CkWYZzHS4OdX2UKGgGR0CUmUvWpZOjaAdN6ANoCEdApF+nu1F6RnV9lChoBkdAlXktl/Yra2gHTegDaAhHQKRj56u4gA91fZQoaAZHQIeLu63AmAtoB03oA2gIR0CkZ+fRVp9JdX2UKGgGR0CN4/sVLzwuaAdN6ANoCEdApGgrCSA6MnV9lChoBkdAk2/2nGbTdGgHTegDaAhHQKRsx5k9U0h1fZQoaAZHQImCnp+tr9FoB03oA2gIR0Ckb8bmuDBedX2UKGgGR0CQdZLa24NJaAdN6ANoCEdApHPnJxNqQHV9lChoBkdAgHkjs+mm+GgHTegDaAhHQKR0LOUMXrN1fZQoaAZHQIGBH8MuvlloB03oA2gIR0CkeXnmRvFWdX2UKGgGR0CCPxaQmu1XaAdN6ANoCEdApH4nEwWWQnV9lChoBkdAg7kBn8Koh2gHTegDaAhHQKSCxvBJqZd1fZQoaAZHQIed0Ft8/lhoB03oA2gIR0Ckgw4hEBsAdX2UKGgGR0CEt+1Vo6CEaAdN6ANoCEdApIfVIGyHEnV9lChoBkdAh9JkNOM2nGgHTegDaAhHQKSKwAiFCcB1fZQoaAZHQIGksJ2MbWFoB03oA2gIR0CkjsnuiN83dX2UKGgGR0CGlzUqhDgJaAdN6ANoCEdApI8PmNipenV9lChoBkdAhVM6XKKYRmgHTegDaAhHQKSTnygf2bp1fZQoaAZHQIsg6ufVZs9oB03oA2gIR0Ckl+JTVDrrdX2UKGgGR0CSvxEdeY2LaAdN6ANoCEdApJ2PU4JeFHV9lChoBkdAgHwtyYG+smgHTegDaAhHQKSd1b/wRXh1fZQoaAZHQIh/BGBnSORoB03oA2gIR0CkomIC+10DdX2UKGgGR0CGSZtkWhysaAdN6ANoCEdApKVmJemelXV9lChoBkdAkglIdyT6i2gHTegDaAhHQKSpiWLP2PF1fZQoaAZHQH1lO89Oh01oB03oA2gIR0Ckqc6zNUwSdX2UKGgGR0CG+lxXGOuJaAdN6ANoCEdApK6IpYs/ZHV9lChoBkdAhc3kU9IPLGgHTegDaAhHQKSx8XiR4hV1fZQoaAZHQJHbmwbEP2BoB03oA2gIR0CkuAbtJFspdX2UKGgGR0CShAQK8cuKaAdN6ANoCEdApLhwwVTJhnV9lChoBkdAkdcMeGO+7GgHTegDaAhHQKS9OdRzijt1fZQoaAZHQI86yT4cm0FoB03oA2gIR0CkwCA5R0lrdX2UKGgGR0CTn6f/WDpUaAdN6ANoCEdApMQOp++dsnV9lChoBkdAlGg3hwVCX2gHTegDaAhHQKTEUbG3nZF1fZQoaAZHQJXKuaDwpfBoB03oA2gIR0CkyLy/bj95dX2UKGgGR0CXd0bnoxHoaAdN6ANoCEdApMugXl8w6HV9lChoBkdAlsDV0PpY92gHTegDaAhHQKTQ4uvllsh1fZQoaAZHQJaDawQlKK5oB03oA2gIR0Ck0Uzi0fHQdX2UKGgGR0CXT5vIfbKzaAdN6ANoCEdApNc2FpPAPHV9lChoBkdAlfJLns9jgGgHTegDaAhHQKTaL/e+Eh91fZQoaAZHQIY0z7wazeJoB03oA2gIR0Ck3jXTNMXadX2UKGgGR0CG+luBtk4FaAdN6ANoCEdApN56fvnbI3V9lChoBkdAk4SqisXBQGgHTegDaAhHQKTi8y44Ia91fZQoaAZHQI2HjCcf/3poB03oA2gIR0Ck5fCYLLIQdX2UKGgGR0CC8b3r2QGOaAdN6ANoCEdApOorlzU7S3V9lChoBkdAkROx2nsLOWgHTegDaAhHQKTqllV94NZ1fZQoaAZHQJLEqONo8IRoB03oA2gIR0Ck8XiN0eU7dX2UKGgGR0CV5/MewLVnaAdN6ANoCEdApPSFCRfWtnV9lChoBkdAlEm7leWv82gHTegDaAhHQKT4kqEvkBF1fZQoaAZHQJSxVGAkLQZoB03oA2gIR0Ck+NUe2d/bdX2UKGgGR0CWpx6ErXlKaAdN6ANoCEdApP09sWO6unV9lChoBkdAli/d3GGVRmgHTegDaAhHQKUAHj3Ehq11fZQoaAZHQJeCYvxpcopoB03oA2gIR0ClBAvHDJlrdX2UKGgGR0CU7/NvwVj7aAdN6ANoCEdApQRTCUHIIXV9lChoBkdAlg1Mq8UVSGgHTegDaAhHQKUKKlzltCR1fZQoaAZHQJmG65e7cwhoB03oA2gIR0ClDq6c7QsxdX2UKGgGR0CV7QeWfK6naAdN6ANoCEdApRKqQA+6iHV9lChoBkdAmNLCnpB5X2gHTegDaAhHQKUS7ozvZyx1fZQoaAZHQJous3m3fANoB03oA2gIR0ClF3iYsunNdX2UKGgGR0CXzaY9xIataAdN6ANoCEdApRplLOAy23VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96914000ad894d26cec631744c5dd387c1d9d925189faed0f58aa39d447df1d4
|
3 |
+
size 1182201
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1688.278646525368, "std_reward": 92.92491653965801, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T04:01:48.436227"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8887fdc4e505508b529ca0c26652bed94661f0d3982d3330c75468615b6d8656
|
3 |
+
size 2170
|