--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ndavid/autotrain-data-trec-fine-bert co2_eq_emissions: 0.02238820299105448 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 739422530 - CO2 Emissions (in grams): 0.02238820299105448 ## Validation Metrics - Loss: 0.36623290181159973 - Accuracy: 0.9321753515301903 - Macro F1: 0.9066706944656866 - Micro F1: 0.9321753515301903 - Weighted F1: 0.9314858667247282 - Macro Precision: 0.9489233194839841 - Micro Precision: 0.9321753515301903 - Weighted Precision: 0.9347346558570125 - Macro Recall: 0.8842587178845419 - Micro Recall: 0.9321753515301903 - Weighted Recall: 0.9321753515301903 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ndavid/autotrain-trec-fine-bert-739422530 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```