system HF staff commited on
Commit
3956a43
·
1 Parent(s): a9151a6

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -26,3 +26,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
30
+ *.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags: autotrain
3
+ language: en
4
+ widget:
5
+ - text: "I love AutoTrain 🤗"
6
+ datasets:
7
+ - ndavid/autotrain-data-trec-fine-bert
8
+ co2_eq_emissions: 0.02238820299105448
9
+ ---
10
+
11
+ # Model Trained Using AutoTrain
12
+
13
+ - Problem type: Multi-class Classification
14
+ - Model ID: 739422530
15
+ - CO2 Emissions (in grams): 0.02238820299105448
16
+
17
+ ## Validation Metrics
18
+
19
+ - Loss: 0.36623290181159973
20
+ - Accuracy: 0.9321753515301903
21
+ - Macro F1: 0.9066706944656866
22
+ - Micro F1: 0.9321753515301903
23
+ - Weighted F1: 0.9314858667247282
24
+ - Macro Precision: 0.9489233194839841
25
+ - Micro Precision: 0.9321753515301903
26
+ - Weighted Precision: 0.9347346558570125
27
+ - Macro Recall: 0.8842587178845419
28
+ - Micro Recall: 0.9321753515301903
29
+ - Weighted Recall: 0.9321753515301903
30
+
31
+
32
+ ## Usage
33
+
34
+ You can use cURL to access this model:
35
+
36
+ ```
37
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ndavid/autotrain-trec-fine-bert-739422530
38
+ ```
39
+
40
+ Or Python API:
41
+
42
+ ```
43
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True)
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True)
48
+
49
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
50
+
51
+ outputs = model(**inputs)
52
+ ```
config.json ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 47,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "abb",
15
+ "1": "animal",
16
+ "2": "body",
17
+ "3": "city",
18
+ "4": "code",
19
+ "5": "color",
20
+ "6": "count",
21
+ "7": "country",
22
+ "8": "cremat",
23
+ "9": "currency",
24
+ "10": "date",
25
+ "11": "def",
26
+ "12": "desc",
27
+ "13": "dismed",
28
+ "14": "dist",
29
+ "15": "event",
30
+ "16": "exp",
31
+ "17": "food",
32
+ "18": "gr",
33
+ "19": "ind",
34
+ "20": "instru",
35
+ "21": "lang",
36
+ "22": "letter",
37
+ "23": "manner",
38
+ "24": "money",
39
+ "25": "mount",
40
+ "26": "ord",
41
+ "27": "other",
42
+ "28": "perc",
43
+ "29": "period",
44
+ "30": "plant",
45
+ "31": "product",
46
+ "32": "reason",
47
+ "33": "religion",
48
+ "34": "speed",
49
+ "35": "sport",
50
+ "36": "state",
51
+ "37": "substance",
52
+ "38": "symbol",
53
+ "39": "techmeth",
54
+ "40": "temp",
55
+ "41": "termeq",
56
+ "42": "title",
57
+ "43": "veh",
58
+ "44": "volsize",
59
+ "45": "weight",
60
+ "46": "word"
61
+ },
62
+ "initializer_range": 0.02,
63
+ "intermediate_size": 3072,
64
+ "label2id": {
65
+ "abb": 0,
66
+ "animal": 1,
67
+ "body": 2,
68
+ "city": 3,
69
+ "code": 4,
70
+ "color": 5,
71
+ "count": 6,
72
+ "country": 7,
73
+ "cremat": 8,
74
+ "currency": 9,
75
+ "date": 10,
76
+ "def": 11,
77
+ "desc": 12,
78
+ "dismed": 13,
79
+ "dist": 14,
80
+ "event": 15,
81
+ "exp": 16,
82
+ "food": 17,
83
+ "gr": 18,
84
+ "ind": 19,
85
+ "instru": 20,
86
+ "lang": 21,
87
+ "letter": 22,
88
+ "manner": 23,
89
+ "money": 24,
90
+ "mount": 25,
91
+ "ord": 26,
92
+ "other": 27,
93
+ "perc": 28,
94
+ "period": 29,
95
+ "plant": 30,
96
+ "product": 31,
97
+ "reason": 32,
98
+ "religion": 33,
99
+ "speed": 34,
100
+ "sport": 35,
101
+ "state": 36,
102
+ "substance": 37,
103
+ "symbol": 38,
104
+ "techmeth": 39,
105
+ "temp": 40,
106
+ "termeq": 41,
107
+ "title": 42,
108
+ "veh": 43,
109
+ "volsize": 44,
110
+ "weight": 45,
111
+ "word": 46
112
+ },
113
+ "layer_norm_eps": 1e-12,
114
+ "max_length": 64,
115
+ "max_position_embeddings": 512,
116
+ "model_type": "bert",
117
+ "num_attention_heads": 12,
118
+ "num_hidden_layers": 12,
119
+ "pad_token_id": 0,
120
+ "padding": "max_length",
121
+ "position_embedding_type": "absolute",
122
+ "problem_type": "single_label_classification",
123
+ "torch_dtype": "float32",
124
+ "transformers_version": "4.15.0",
125
+ "type_vocab_size": 2,
126
+ "use_cache": true,
127
+ "vocab_size": 30522
128
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48e539da1fd3bd70e829457e4317a12dd4ccefad19a869bf44be5a3321ed7fd1
3
+ size 438157613
sample_input.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de9ce99a14a81f8898007ee4f5a6ec8277aac7ecbdf6046eb696fcc62b97da9
3
+ size 2848
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "AutoTrain", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff