File size: 7,046 Bytes
82c8631
29c99e8
 
 
 
 
 
c8f8faa
73af2f0
 
 
 
c8f8faa
82c8631
29c99e8
78c6af3
29c99e8
 
 
818c49c
78b0fa8
1d965c6
78b0fa8
1d965c6
78b0fa8
29c99e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516898
 
 
78b0fa8
 
1d965c6
20a1681
 
1d965c6
 
 
 
 
 
 
 
 
 
78b0fa8
 
 
 
1d965c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: [mit, apache-2.0] 
language:
- multilingual
- de
- en

---

# nblokker/debatenet-2-cat

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model may be used to estimate the similarities between sentences containing migration-related demands and propositions. Check out this [blog post](https://nicoblokker.github.io/PTaD/posts/qca_meets_sbert/dna_meets_sbert.html) for more information and potential use cases.

# Fine-Tuned on `sentence-transformers_paraphrase-multilingual-mpnet-base-v2` Model

This repository contains a fine-tuned version of the `sentence-transformers_paraphrase-multilingual-mpnet-base-v2` model. The original model was created by Nils Reimers and Iryna Gurevych and is available on [Hugging Face](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('nblokker/debatenet-2-cat')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nblokker/debatenet-2-cat')
model = AutoModel.from_pretrained('nblokker/debatenet-2-cat')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 38 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 15,
    "evaluation_steps": 120.5,
    "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 120.5,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

```
@preprint{blokker2023,
  author = {Blokker, Nico and Blessing, Andre and Dayanik, Erenay and Kuhn, Jonas and Padó, Sebastian and Lapesa, Gabriella},
  note = {To appear in \textit{Language Resources and Evaluation}},
  title = {Between welcome culture and border fence: The {E}uropean refugee crisis in {G}erman newspaper reports},
  url = {https://arxiv.org/abs/2111.10142},
  year = 2023
}

@inproceedings{lapesa2020,
  abstract = {DEbateNet-migr15 is a manually annotated dataset for German which covers the public debate on immigration in 2015. The building block of our annotation is the political science notion of a claim, i.e., a statement made by a political actor (a politician, a party, or a group of citizens) that a specific action should be taken (e.g., vacant flats should be assigned to refugees). We identify claims in newspaper articles, assign them to actors and fine-grained categories and annotate their polarity and date. The aim of this paper is two-fold: first, we release the full DEbateNet-mig15 corpus and document it by means of a quantitative and qualitative analysis; second, we demonstrate its application in a discourse network analysis framework, which enables us to capture the temporal dynamics of the political debate.},
  address = {Online},
  author = {Lapesa, Gabriella and Blessing, Andre and Blokker, Nico and Dayanik, Erenay and Haunss, Sebastian and Kuhn, Jonas and Padó, Sebastian},
  booktitle = {Proceedings of LREC},
  pages = {919--927},
  title = {{DEbateNet-mig15}: {T}racing the 2015 Immigration Debate in {G}ermany Over Time},
  url = {https://www.aclweb.org/anthology/2020.lrec-1.115},
  year = 2020
}


```

## Acknowledgments

This model is based on the `sentence-transformers/paraphrase-multilingual-mpnet-base-v2` model:
 ```
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
```
- Original model URL: https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- License: Apache 2.0

## License

The fine-tuned parts of this model are released under the MIT License. See the LICENSE file for more details. The original sentence-transformers/paraphrase-multilingual-mpnet-base-v2 model remains under its original Apache 2.0 License.