File size: 7,046 Bytes
82c8631 29c99e8 c8f8faa 73af2f0 c8f8faa 82c8631 29c99e8 78c6af3 29c99e8 818c49c 78b0fa8 1d965c6 78b0fa8 1d965c6 78b0fa8 29c99e8 1516898 78b0fa8 1d965c6 20a1681 1d965c6 78b0fa8 1d965c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: [mit, apache-2.0]
language:
- multilingual
- de
- en
---
# nblokker/debatenet-2-cat
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model may be used to estimate the similarities between sentences containing migration-related demands and propositions. Check out this [blog post](https://nicoblokker.github.io/PTaD/posts/qca_meets_sbert/dna_meets_sbert.html) for more information and potential use cases.
# Fine-Tuned on `sentence-transformers_paraphrase-multilingual-mpnet-base-v2` Model
This repository contains a fine-tuned version of the `sentence-transformers_paraphrase-multilingual-mpnet-base-v2` model. The original model was created by Nils Reimers and Iryna Gurevych and is available on [Hugging Face](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nblokker/debatenet-2-cat')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nblokker/debatenet-2-cat')
model = AutoModel.from_pretrained('nblokker/debatenet-2-cat')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 38 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss`
Parameters of the fit()-Method:
```
{
"epochs": 15,
"evaluation_steps": 120.5,
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 120.5,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
```
@preprint{blokker2023,
author = {Blokker, Nico and Blessing, Andre and Dayanik, Erenay and Kuhn, Jonas and Padó, Sebastian and Lapesa, Gabriella},
note = {To appear in \textit{Language Resources and Evaluation}},
title = {Between welcome culture and border fence: The {E}uropean refugee crisis in {G}erman newspaper reports},
url = {https://arxiv.org/abs/2111.10142},
year = 2023
}
@inproceedings{lapesa2020,
abstract = {DEbateNet-migr15 is a manually annotated dataset for German which covers the public debate on immigration in 2015. The building block of our annotation is the political science notion of a claim, i.e., a statement made by a political actor (a politician, a party, or a group of citizens) that a specific action should be taken (e.g., vacant flats should be assigned to refugees). We identify claims in newspaper articles, assign them to actors and fine-grained categories and annotate their polarity and date. The aim of this paper is two-fold: first, we release the full DEbateNet-mig15 corpus and document it by means of a quantitative and qualitative analysis; second, we demonstrate its application in a discourse network analysis framework, which enables us to capture the temporal dynamics of the political debate.},
address = {Online},
author = {Lapesa, Gabriella and Blessing, Andre and Blokker, Nico and Dayanik, Erenay and Haunss, Sebastian and Kuhn, Jonas and Padó, Sebastian},
booktitle = {Proceedings of LREC},
pages = {919--927},
title = {{DEbateNet-mig15}: {T}racing the 2015 Immigration Debate in {G}ermany Over Time},
url = {https://www.aclweb.org/anthology/2020.lrec-1.115},
year = 2020
}
```
## Acknowledgments
This model is based on the `sentence-transformers/paraphrase-multilingual-mpnet-base-v2` model:
```
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
```
- Original model URL: https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- License: Apache 2.0
## License
The fine-tuned parts of this model are released under the MIT License. See the LICENSE file for more details. The original sentence-transformers/paraphrase-multilingual-mpnet-base-v2 model remains under its original Apache 2.0 License. |