import torch from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import os from datetime import datetime from config import Config from model import SmoothDiffusionUNet from noise_scheduler import FrequencyAwareNoise from dataloader import get_dataloaders from loss import diffusion_loss from sample import sample def train(): config = Config() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Setup logging timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") log_dir = os.path.join(config.log_dir, timestamp) os.makedirs(log_dir, exist_ok=True) writer = SummaryWriter(log_dir) # Initialize components model = SmoothDiffusionUNet(config).to(device) noise_scheduler = FrequencyAwareNoise(config) optimizer = torch.optim.AdamW(model.parameters(), lr=config.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True) train_loader, val_loader = get_dataloaders(config) # Training loop for epoch in range(config.epochs): model.train() epoch_loss = 0.0 num_batches = 0 for batch_idx, (x0, _) in enumerate(train_loader): x0 = x0.to(device) # Sample random timesteps t = torch.randint(0, config.T, (x0.size(0),), device=device) # Compute loss loss = diffusion_loss(model, x0, t, noise_scheduler, config) # Optimize optimizer.zero_grad() loss.backward() # Add gradient clipping for stability torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=5.0) # Increased from 1.0 optimizer.step() # Track epoch loss for scheduler epoch_loss += loss.item() num_batches += 1 # Logging with more details if batch_idx % 100 == 0: # Check for NaN values if torch.isnan(loss): print(f"WARNING: NaN loss detected at Epoch {epoch}, Batch {batch_idx}") # Check gradient norms total_norm = 0 for p in model.parameters(): if p.grad is not None: param_norm = p.grad.data.norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm ** (1. / 2) # Debug noise statistics less frequently (every 5 epochs) if batch_idx == 0 and epoch % 5 == 0: print(f"Debug for Epoch {epoch}:") noise_scheduler.debug_noise_stats(x0[:1], t[:1]) # Re-enable batch logging since training is stable if batch_idx % 500 == 0: # Less frequent logging print(f"Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}, Grad Norm: {total_norm:.4f}") writer.add_scalar('Loss/train', loss.item(), epoch * len(train_loader) + batch_idx) writer.add_scalar('Grad_Norm/train', total_norm, epoch * len(train_loader) + batch_idx) # Update learning rate based on epoch loss avg_epoch_loss = epoch_loss / num_batches scheduler.step(avg_epoch_loss) # Log epoch statistics current_lr = optimizer.param_groups[0]['lr'] print(f"Epoch {epoch} completed. Avg Loss: {avg_epoch_loss:.4f}, LR: {current_lr:.2e}") writer.add_scalar('Loss/epoch', avg_epoch_loss, epoch) writer.add_scalar('Learning_Rate', current_lr, epoch) # Validation if epoch % config.sample_every == 0: sample(model, noise_scheduler, device, epoch, writer) # Save model checkpoints at epoch 30 and every 30 epochs if epoch == 30 or (epoch > 30 and epoch % 30 == 0): checkpoint_path = os.path.join(log_dir, f"model_epoch_{epoch}.pth") torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'loss': avg_epoch_loss, 'config': config }, checkpoint_path) print(f"Model checkpoint saved at epoch {epoch}: {checkpoint_path}") torch.save(model.state_dict(), os.path.join(log_dir, "model_final.pth")) if __name__ == "__main__": train()