nawta commited on
Commit
bd16e12
·
1 Parent(s): 8e75df4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base-timit-demo-colab
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base-timit-demo-colab
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0403
18
+ - Wer: 0.0168
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 64
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | 4.5738 | 2.82 | 500 | 2.8712 | 1.0 |
52
+ | 1.3905 | 5.65 | 1000 | 0.2342 | 0.2124 |
53
+ | 0.1868 | 8.47 | 1500 | 0.1023 | 0.0697 |
54
+ | 0.0831 | 11.3 | 2000 | 0.0603 | 0.0339 |
55
+ | 0.0512 | 14.12 | 2500 | 0.0519 | 0.0263 |
56
+ | 0.0363 | 16.95 | 3000 | 0.0478 | 0.0228 |
57
+ | 0.0267 | 19.77 | 3500 | 0.0490 | 0.0228 |
58
+ | 0.0205 | 22.6 | 4000 | 0.0390 | 0.0182 |
59
+ | 0.0163 | 25.42 | 4500 | 0.0418 | 0.0184 |
60
+ | 0.0145 | 28.25 | 5000 | 0.0403 | 0.0168 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.11.3
66
+ - Pytorch 1.9.1+cu111
67
+ - Datasets 1.13.3
68
+ - Tokenizers 0.10.3