|
import gradio as gr |
|
from tensorflow.keras.models import model_from_json |
|
import numpy as np |
|
import cv2 |
|
|
|
|
|
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') |
|
|
|
|
|
with open('antispoofing_model.json', 'r') as json_file: |
|
loaded_model_json = json_file.read() |
|
model = model_from_json(loaded_model_json) |
|
model.load_weights('antispoofing_model.h5') |
|
|
|
|
|
def predict(image): |
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
faces = face_cascade.detectMultiScale(gray, 1.3, 5) |
|
for (x, y, w, h) in faces: |
|
face = image[y:y+h, x:x+w] |
|
face = cv2.resize(face, (160, 160)) |
|
face = face.astype('float') / 255.0 |
|
face = np.expand_dims(face, axis=0) |
|
pred = model.predict(face) |
|
label = 'Spoof' if pred > 0.5 else 'Real' |
|
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
cv2.putText(image, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
return image |
|
|
|
|
|
iface = gr.Interface(fn=predict, inputs="image", outputs="image") |
|
|
|
|
|
iface.launch() |
|
|