Upload folder using huggingface_hub
Browse files- README.md +19 -0
- __pycache__/config_tiny_mistral.cpython-310.pyc +0 -0
- __pycache__/dataloader.cpython-310.pyc +0 -0
- __pycache__/modeling_mistral.cpython-310.pyc +0 -0
- config_tiny_mistral.py +148 -0
- config_tiny_mistral.yaml +90 -0
- dataloader.py +107 -0
- modeling_mistral.py +1123 -0
- run_train.py +34 -0
README.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: nanotron
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# ⚙️ Nano-Mistral
|
| 6 |
+
|
| 7 |
+
Modeling code for Mistral to use with [Nanotron](https://github.com/huggingface/nanotron/)
|
| 8 |
+
|
| 9 |
+
## 🚀 Quickstart
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
# Generate a config file
|
| 13 |
+
python config_tiny_mistral.py
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Run training
|
| 17 |
+
export CUDA_DEVICE_MAX_CONNECTIONS=1 # important for some distributed operations
|
| 18 |
+
torchrun --nproc_per_node=8 run_train.py --config-file config_tiny_mistral.yaml
|
| 19 |
+
```
|
__pycache__/config_tiny_mistral.cpython-310.pyc
ADDED
|
Binary file (3.99 kB). View file
|
|
|
__pycache__/dataloader.cpython-310.pyc
ADDED
|
Binary file (2.81 kB). View file
|
|
|
__pycache__/modeling_mistral.cpython-310.pyc
ADDED
|
Binary file (24.7 kB). View file
|
|
|
config_tiny_mistral.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Example python script to generate a YAML config file which can be used to run a training with nanotron. Refer to "examples" section in the `/README.md` for more information.
|
| 2 |
+
|
| 3 |
+
Usage:
|
| 4 |
+
```
|
| 5 |
+
python config_tiny_mistral.py
|
| 6 |
+
```
|
| 7 |
+
"""
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
from nanotron.config import (
|
| 11 |
+
CheckpointsArgs,
|
| 12 |
+
Config,
|
| 13 |
+
DataArgs,
|
| 14 |
+
GeneralArgs,
|
| 15 |
+
LoggingArgs,
|
| 16 |
+
LRSchedulerArgs,
|
| 17 |
+
ModelArgs,
|
| 18 |
+
OptimizerArgs,
|
| 19 |
+
ParallelismArgs,
|
| 20 |
+
PretrainDatasetsArgs,
|
| 21 |
+
RandomInit,
|
| 22 |
+
TokenizerArgs,
|
| 23 |
+
TokensArgs,
|
| 24 |
+
)
|
| 25 |
+
from nanotron.logging import human_format
|
| 26 |
+
from dataclasses import dataclass
|
| 27 |
+
from typing import Optional
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class MistralConfig:
|
| 32 |
+
"""Configuration for a MISTRAL model
|
| 33 |
+
|
| 34 |
+
Be careful on having a coherent typing as we use it to reconstruct the model from yaml
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
bos_token_id: int = 1
|
| 38 |
+
eos_token_id: int = 2
|
| 39 |
+
hidden_act: str = "silu"
|
| 40 |
+
hidden_size: int = 4096
|
| 41 |
+
initializer_range: float = 0.02
|
| 42 |
+
intermediate_size: int = 11008
|
| 43 |
+
is_mistral_config: bool = True # We use this help differentiate models in yaml/python conversion
|
| 44 |
+
max_position_embeddings: int = 2048
|
| 45 |
+
num_attention_heads: int = 32
|
| 46 |
+
num_hidden_layers: int = 32
|
| 47 |
+
num_key_value_heads: Optional[int] = None
|
| 48 |
+
pad_token_id: Optional[int] = None
|
| 49 |
+
pretraining_tp: int = 1
|
| 50 |
+
rms_norm_eps: float = 1e-6
|
| 51 |
+
rope_scaling: Optional[dict] = None
|
| 52 |
+
tie_word_embeddings: bool = False
|
| 53 |
+
use_cache: bool = True
|
| 54 |
+
vocab_size: int = 32000
|
| 55 |
+
|
| 56 |
+
def __post_init__(self):
|
| 57 |
+
# for backward compatibility
|
| 58 |
+
if self.num_key_value_heads is None:
|
| 59 |
+
self.num_key_value_heads = self.num_attention_heads
|
| 60 |
+
|
| 61 |
+
model_config = MistralConfig(
|
| 62 |
+
# Config for a tiny model model with 1.62M parameters
|
| 63 |
+
bos_token_id=1,
|
| 64 |
+
eos_token_id=2,
|
| 65 |
+
hidden_act="silu",
|
| 66 |
+
hidden_size=16,
|
| 67 |
+
initializer_range=0.02,
|
| 68 |
+
intermediate_size=64,
|
| 69 |
+
max_position_embeddings=256,
|
| 70 |
+
num_attention_heads=4,
|
| 71 |
+
num_hidden_layers=2,
|
| 72 |
+
num_key_value_heads=4,
|
| 73 |
+
pretraining_tp=1,
|
| 74 |
+
rms_norm_eps=1e-05,
|
| 75 |
+
rope_scaling=None,
|
| 76 |
+
tie_word_embeddings=True,
|
| 77 |
+
use_cache=True,
|
| 78 |
+
vocab_size=256,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
num_params = human_format(
|
| 82 |
+
model_config.vocab_size * model_config.hidden_size * 2
|
| 83 |
+
+ model_config.num_hidden_layers
|
| 84 |
+
* (
|
| 85 |
+
3 * model_config.hidden_size * model_config.intermediate_size
|
| 86 |
+
+ 4 * model_config.hidden_size * model_config.hidden_size
|
| 87 |
+
)
|
| 88 |
+
).replace(".", "p")
|
| 89 |
+
|
| 90 |
+
print(f"Model has {num_params} parameters")
|
| 91 |
+
|
| 92 |
+
seed = 42
|
| 93 |
+
|
| 94 |
+
learning_rate = LRSchedulerArgs(
|
| 95 |
+
learning_rate=3e-4, lr_warmup_steps=2, lr_warmup_style="linear", lr_decay_style="cosine", min_decay_lr=1e-5
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
optimizer = OptimizerArgs(
|
| 99 |
+
zero_stage=0,
|
| 100 |
+
weight_decay=0.01,
|
| 101 |
+
clip_grad=1.0,
|
| 102 |
+
accumulate_grad_in_fp32=True,
|
| 103 |
+
adam_eps=1e-08,
|
| 104 |
+
adam_beta1=0.9,
|
| 105 |
+
adam_beta2=0.95,
|
| 106 |
+
torch_adam_is_fused=True,
|
| 107 |
+
learning_rate_scheduler=learning_rate,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
parallelism = ParallelismArgs(
|
| 111 |
+
dp=2,
|
| 112 |
+
pp=2,
|
| 113 |
+
tp=2,
|
| 114 |
+
pp_engine="1f1b",
|
| 115 |
+
tp_mode="REDUCE_SCATTER",
|
| 116 |
+
tp_linear_async_communication=True,
|
| 117 |
+
recompute_granularity="selective",
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
tokens = TokensArgs(sequence_length=32, train_steps=10, micro_batch_size=2, batch_accumulation_per_replica=1)
|
| 121 |
+
|
| 122 |
+
dataset = PretrainDatasetsArgs(
|
| 123 |
+
hf_dataset_or_datasets="HuggingFaceH4/testing_alpaca_small", text_column_name="completion"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
checkpoints_path = os.path.dirname(os.path.dirname(__file__)) + "/checkpoints"
|
| 127 |
+
os.makedirs(checkpoints_path, exist_ok=True)
|
| 128 |
+
|
| 129 |
+
config = Config(
|
| 130 |
+
general=GeneralArgs(project="debug", run="tiny_mistral", seed=seed),
|
| 131 |
+
checkpoints=CheckpointsArgs(checkpoints_path=checkpoints_path, checkpoint_interval=10),
|
| 132 |
+
parallelism=parallelism,
|
| 133 |
+
model=ModelArgs(init_method=RandomInit(std=0.025), model_config=model_config),
|
| 134 |
+
tokenizer=TokenizerArgs("gpt2"),
|
| 135 |
+
optimizer=optimizer,
|
| 136 |
+
logging=LoggingArgs(),
|
| 137 |
+
tokens=tokens,
|
| 138 |
+
data=DataArgs(dataset=dataset, seed=seed),
|
| 139 |
+
profiler=None,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if __name__ == "__main__":
|
| 143 |
+
dir = os.path.dirname(__file__)
|
| 144 |
+
|
| 145 |
+
# Save config as YAML file
|
| 146 |
+
config.save_as_yaml(f"{dir}/config_tiny_mistral.yaml")
|
| 147 |
+
|
| 148 |
+
# You can now train a model with this config using `/run_train.py`
|
config_tiny_mistral.yaml
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoints:
|
| 2 |
+
checkpoint_interval: 10
|
| 3 |
+
checkpoints_path: /fsx/nouamane/projects/nanotron/checkpoints
|
| 4 |
+
checkpoints_path_is_shared_file_system: false
|
| 5 |
+
resume_checkpoint_path: null
|
| 6 |
+
save_initial_state: false
|
| 7 |
+
data:
|
| 8 |
+
dataset:
|
| 9 |
+
dataset_overwrite_cache: false
|
| 10 |
+
dataset_processing_num_proc_per_process: 1
|
| 11 |
+
hf_dataset_config_name: null
|
| 12 |
+
hf_dataset_or_datasets: HuggingFaceH4/testing_alpaca_small
|
| 13 |
+
hf_dataset_splits: train
|
| 14 |
+
text_column_name: completion
|
| 15 |
+
num_loading_workers: 1
|
| 16 |
+
seed: 42
|
| 17 |
+
general:
|
| 18 |
+
benchmark_csv_path: null
|
| 19 |
+
consumed_train_samples: null
|
| 20 |
+
ignore_sanity_checks: false
|
| 21 |
+
project: debug
|
| 22 |
+
run: tiny_mistral
|
| 23 |
+
seed: 42
|
| 24 |
+
step: null
|
| 25 |
+
logging:
|
| 26 |
+
iteration_step_info_interval: 1
|
| 27 |
+
log_level: info
|
| 28 |
+
log_level_replica: info
|
| 29 |
+
model:
|
| 30 |
+
ddp_bucket_cap_mb: 25
|
| 31 |
+
dtype: bfloat16
|
| 32 |
+
init_method:
|
| 33 |
+
std: 0.025
|
| 34 |
+
make_vocab_size_divisible_by: 1
|
| 35 |
+
model_config:
|
| 36 |
+
bos_token_id: 1
|
| 37 |
+
eos_token_id: 2
|
| 38 |
+
hidden_act: silu
|
| 39 |
+
hidden_size: 16
|
| 40 |
+
initializer_range: 0.02
|
| 41 |
+
intermediate_size: 64
|
| 42 |
+
is_mistral_config: true
|
| 43 |
+
max_position_embeddings: 256
|
| 44 |
+
num_attention_heads: 4
|
| 45 |
+
num_hidden_layers: 2
|
| 46 |
+
num_key_value_heads: 4
|
| 47 |
+
pad_token_id: null
|
| 48 |
+
pretraining_tp: 1
|
| 49 |
+
rms_norm_eps: 1.0e-05
|
| 50 |
+
rope_scaling: null
|
| 51 |
+
tie_word_embeddings: true
|
| 52 |
+
use_cache: true
|
| 53 |
+
vocab_size: 256
|
| 54 |
+
optimizer:
|
| 55 |
+
accumulate_grad_in_fp32: true
|
| 56 |
+
adam_beta1: 0.9
|
| 57 |
+
adam_beta2: 0.95
|
| 58 |
+
adam_eps: 1.0e-08
|
| 59 |
+
clip_grad: 1.0
|
| 60 |
+
learning_rate_scheduler:
|
| 61 |
+
learning_rate: 0.0003
|
| 62 |
+
lr_decay_steps: 8
|
| 63 |
+
lr_decay_style: cosine
|
| 64 |
+
lr_warmup_steps: 2
|
| 65 |
+
lr_warmup_style: linear
|
| 66 |
+
min_decay_lr: 1.0e-05
|
| 67 |
+
torch_adam_is_fused: true
|
| 68 |
+
weight_decay: 0.01
|
| 69 |
+
zero_stage: 0
|
| 70 |
+
parallelism:
|
| 71 |
+
dp: 2
|
| 72 |
+
pp: 2
|
| 73 |
+
pp_engine: 1f1b
|
| 74 |
+
recompute_granularity: SELECTIVE
|
| 75 |
+
tp: 2
|
| 76 |
+
tp_linear_async_communication: true
|
| 77 |
+
tp_mode: REDUCE_SCATTER
|
| 78 |
+
profiler: null
|
| 79 |
+
tokenizer:
|
| 80 |
+
tokenizer_max_length: null
|
| 81 |
+
tokenizer_name_or_path: gpt2
|
| 82 |
+
tokenizer_revision: null
|
| 83 |
+
tokens:
|
| 84 |
+
batch_accumulation_per_replica: 1
|
| 85 |
+
limit_test_batches: 0
|
| 86 |
+
limit_val_batches: 0
|
| 87 |
+
micro_batch_size: 2
|
| 88 |
+
sequence_length: 32
|
| 89 |
+
train_steps: 10
|
| 90 |
+
val_check_interval: -1
|
dataloader.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from nanotron.config import (
|
| 2 |
+
PretrainDatasetsArgs,
|
| 3 |
+
)
|
| 4 |
+
from nanotron.dataloader import (
|
| 5 |
+
clm_process,
|
| 6 |
+
dummy_infinite_data_generator,
|
| 7 |
+
get_datasets,
|
| 8 |
+
get_train_dataloader,
|
| 9 |
+
)
|
| 10 |
+
from nanotron.logging import log_rank
|
| 11 |
+
from nanotron.parallel.pipeline_parallel.utils import get_input_output_pp_ranks
|
| 12 |
+
from nanotron.trainer import DistributedTrainer
|
| 13 |
+
from nanotron.utils import (
|
| 14 |
+
main_rank_first,
|
| 15 |
+
)
|
| 16 |
+
from nanotron import logging
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
from huggingface_hub import __version__ as hf_hub_version
|
| 20 |
+
from transformers import AutoTokenizer
|
| 21 |
+
from transformers import __version__ as tf_version
|
| 22 |
+
except ImportError:
|
| 23 |
+
hf_hub_version = None
|
| 24 |
+
tf_version = None
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_dataloader(trainer: DistributedTrainer):
|
| 30 |
+
"""Returns a dataloader for training."""
|
| 31 |
+
|
| 32 |
+
# First, we need to know which ranks to feed the dataloader to
|
| 33 |
+
input_pp_rank, output_pp_rank = get_input_output_pp_ranks(model=trainer.model)
|
| 34 |
+
|
| 35 |
+
# Case 1: Dummy data generator
|
| 36 |
+
if trainer.config.data.dataset is None:
|
| 37 |
+
log_rank("Using dummy data generator", logger=logger, level=logging.INFO, rank=0)
|
| 38 |
+
dataloader = dummy_infinite_data_generator(
|
| 39 |
+
micro_batch_size=trainer.micro_batch_size,
|
| 40 |
+
sequence_length=trainer.sequence_length,
|
| 41 |
+
input_pp_rank=input_pp_rank,
|
| 42 |
+
output_pp_rank=output_pp_rank,
|
| 43 |
+
vocab_size=trainer.model_config.vocab_size,
|
| 44 |
+
seed=trainer.config.data.seed,
|
| 45 |
+
parallel_context=trainer.parallel_context,
|
| 46 |
+
)()
|
| 47 |
+
|
| 48 |
+
# Case 2: HuggingFace datasets
|
| 49 |
+
elif isinstance(trainer.config.data.dataset, PretrainDatasetsArgs):
|
| 50 |
+
log_rank("Using `datasets` library", logger=logger, level=logging.INFO, rank=0)
|
| 51 |
+
tokenizer_path = trainer.config.tokenizer.tokenizer_name_or_path
|
| 52 |
+
log_rank(
|
| 53 |
+
f"Loading tokenizer from {tokenizer_path} and transformers/hf_hub versions {tf_version, hf_hub_version}",
|
| 54 |
+
logger=logger,
|
| 55 |
+
level=logging.INFO,
|
| 56 |
+
rank=0,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# We need to the 1st device to process dataset and cache it, then other devices load from cache
|
| 60 |
+
with main_rank_first(trainer.parallel_context.world_pg):
|
| 61 |
+
# TODO @nouamanetazi: this may timeout before 1st device finishes processing dataset. Can we have a ctxmanager to modify timeout?
|
| 62 |
+
# TODO: generalise to include for validation/test splits
|
| 63 |
+
|
| 64 |
+
# We load the raw dataset
|
| 65 |
+
raw_dataset = get_datasets(
|
| 66 |
+
hf_dataset_or_datasets=trainer.config.data.dataset.hf_dataset_or_datasets,
|
| 67 |
+
splits=trainer.config.data.dataset.hf_dataset_splits,
|
| 68 |
+
)["train"]
|
| 69 |
+
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 71 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 72 |
+
tokenizer.padding_side = "left"
|
| 73 |
+
|
| 74 |
+
# We apply the Causal Language Modeling preprocessing
|
| 75 |
+
train_dataset = clm_process(
|
| 76 |
+
raw_dataset=raw_dataset,
|
| 77 |
+
tokenizer=tokenizer,
|
| 78 |
+
text_column_name=trainer.config.data.dataset.text_column_name,
|
| 79 |
+
dataset_processing_num_proc_per_process=trainer.config.data.dataset.dataset_processing_num_proc_per_process,
|
| 80 |
+
dataset_overwrite_cache=trainer.config.data.dataset.dataset_overwrite_cache,
|
| 81 |
+
sequence_length=trainer.sequence_length,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# We load the processed dataset on the ranks requiring it
|
| 85 |
+
dataloader = get_train_dataloader(
|
| 86 |
+
train_dataset=train_dataset,
|
| 87 |
+
sequence_length=trainer.sequence_length,
|
| 88 |
+
parallel_context=trainer.parallel_context,
|
| 89 |
+
input_pp_rank=input_pp_rank,
|
| 90 |
+
output_pp_rank=output_pp_rank,
|
| 91 |
+
micro_batch_size=trainer.micro_batch_size,
|
| 92 |
+
consumed_train_samples=trainer.consumed_train_samples,
|
| 93 |
+
dataloader_num_workers=trainer.config.data.num_loading_workers,
|
| 94 |
+
seed_worker=trainer.config.data.seed,
|
| 95 |
+
dataloader_drop_last=True,
|
| 96 |
+
)
|
| 97 |
+
# Check if we have enough samples for train_steps
|
| 98 |
+
assert (
|
| 99 |
+
trainer.config.tokens.train_steps - trainer.start_iteration_step
|
| 100 |
+
) * trainer.global_batch_size // trainer.parallel_context.dp_pg.size() < len(dataloader), (
|
| 101 |
+
f"Dataset is too small for steps ({len(dataloader)} < {(trainer.config.tokens.train_steps - trainer.start_iteration_step) * trainer.global_batch_size // trainer.parallel_context.dp_pg.size()}), "
|
| 102 |
+
f"Try train_steps<={len(dataloader) * trainer.parallel_context.dp_pg.size() // trainer.global_batch_size + trainer.start_iteration_step}"
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(f"Unhandled case of `self.config.data.dataset`. Got: {trainer.config.data.dataset}")
|
| 106 |
+
|
| 107 |
+
return dataloader
|
modeling_mistral.py
ADDED
|
@@ -0,0 +1,1123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch Mistral model.
|
| 16 |
+
"""
|
| 17 |
+
from typing import Dict, Optional, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from flash_attn import bert_padding
|
| 21 |
+
from flash_attn.flash_attn_interface import (
|
| 22 |
+
flash_attn_varlen_func,
|
| 23 |
+
flash_attn_with_kvcache,
|
| 24 |
+
)
|
| 25 |
+
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
| 26 |
+
from torch import nn
|
| 27 |
+
from transformers import MistralConfig
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
|
| 30 |
+
from nanotron import distributed as dist
|
| 31 |
+
from nanotron import logging
|
| 32 |
+
from nanotron.config import ParallelismArgs, RecomputeGranularity
|
| 33 |
+
from nanotron.nn.layer_norm import TritonRMSNorm
|
| 34 |
+
from nanotron.logging import log_rank
|
| 35 |
+
from nanotron.models import NanotronModel
|
| 36 |
+
from nanotron.parallel import ParallelContext
|
| 37 |
+
from nanotron.parallel.parameters import NanotronParameter
|
| 38 |
+
from nanotron.parallel.pipeline_parallel.block import (
|
| 39 |
+
PipelineBlock,
|
| 40 |
+
TensorPointer,
|
| 41 |
+
)
|
| 42 |
+
from nanotron.parallel.pipeline_parallel.p2p import P2P
|
| 43 |
+
from nanotron.parallel.tensor_parallel.functional import sharded_cross_entropy
|
| 44 |
+
from nanotron.parallel.tensor_parallel.nn import (
|
| 45 |
+
TensorParallelColumnLinear,
|
| 46 |
+
TensorParallelEmbedding,
|
| 47 |
+
TensorParallelLinearMode,
|
| 48 |
+
TensorParallelRowLinear,
|
| 49 |
+
)
|
| 50 |
+
from nanotron.random import RandomStates
|
| 51 |
+
from nanotron.utils import checkpoint_method
|
| 52 |
+
from nanotron.generation.generate_store import AttachableStore
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class RotaryEmbedding(nn.Module):
|
| 58 |
+
def __init__(self, dim: int, end: int, theta: float = 10000.0):
|
| 59 |
+
super().__init__()
|
| 60 |
+
assert dim % 2 == 0
|
| 61 |
+
self.dim = dim
|
| 62 |
+
self.end = end
|
| 63 |
+
self.theta = theta
|
| 64 |
+
# TODO @nouamane: Figure out why we can't set `DTypeInvariantTensor` ...
|
| 65 |
+
# TODO @thomasw21: Complex buffers break DDP, instead we store float and view them as complex
|
| 66 |
+
self.freqs_cis: torch.Tensor
|
| 67 |
+
self._initialized_buffer = False
|
| 68 |
+
|
| 69 |
+
def init_rotary_embeddings(self):
|
| 70 |
+
if self._initialized_buffer is True:
|
| 71 |
+
# Buffer if already initialized
|
| 72 |
+
return
|
| 73 |
+
self.register_buffer(
|
| 74 |
+
"freqs_cis",
|
| 75 |
+
torch.empty(self.end, self.dim // 2, 2, dtype=torch.float, device="cuda"),
|
| 76 |
+
persistent=False,
|
| 77 |
+
)
|
| 78 |
+
assert self.freqs_cis.device.type == "cuda"
|
| 79 |
+
# TODO @nouamane: One we figure out how to do the DTypeInvariantTensor, this can be removed and changed to an assert
|
| 80 |
+
if self.freqs_cis.dtype != torch.float:
|
| 81 |
+
self.freqs_cis = self.freqs_cis.to(torch.float)
|
| 82 |
+
assert self.freqs_cis.dtype == torch.float
|
| 83 |
+
freqs = 1.0 / (
|
| 84 |
+
self.theta
|
| 85 |
+
** (torch.arange(0, self.dim, 2, dtype=torch.float, device="cuda")[: (self.dim // 2)] / self.dim)
|
| 86 |
+
)
|
| 87 |
+
t = torch.arange(self.end, device="cuda")
|
| 88 |
+
freqs = torch.outer(t, freqs).float()
|
| 89 |
+
complex_freqs = torch.polar(torch.ones_like(freqs), freqs)
|
| 90 |
+
freqs = torch.view_as_real(complex_freqs)
|
| 91 |
+
self.freqs_cis.copy_(freqs)
|
| 92 |
+
self._initialized_buffer = True
|
| 93 |
+
|
| 94 |
+
def forward(
|
| 95 |
+
self,
|
| 96 |
+
x: torch.Tensor, # [batch_size, seq_length, num_heads, d_qk]
|
| 97 |
+
position_ids: Optional[torch.LongTensor], # [batch_size, seq_length]
|
| 98 |
+
):
|
| 99 |
+
batch_size, seq_length, num_heads, inner_dim = x.shape
|
| 100 |
+
while (
|
| 101 |
+
position_ids is not None and position_ids[-1, -1] >= self.end
|
| 102 |
+
) or seq_length >= self.end: # TODO @nouamane: check if this causes cpu-gpu sync
|
| 103 |
+
self.end *= 2
|
| 104 |
+
self._initialized_buffer = False
|
| 105 |
+
if self._initialized_buffer is False:
|
| 106 |
+
print(f"Initializing rotary embeddings with end={self.end}")
|
| 107 |
+
self.init_rotary_embeddings()
|
| 108 |
+
dtype = x.dtype
|
| 109 |
+
assert inner_dim % 2 == 0
|
| 110 |
+
x = x.view(
|
| 111 |
+
batch_size, seq_length, num_heads, inner_dim // 2, 2
|
| 112 |
+
) # [batch_size, q_length, num_heads, inner_dim]
|
| 113 |
+
if x.dtype == torch.bfloat16:
|
| 114 |
+
x = x.float()
|
| 115 |
+
complex_x = torch.view_as_complex(x) # [batch_size, q_length, num_heads, inner_dim // 2]
|
| 116 |
+
if position_ids is None:
|
| 117 |
+
freqs_cis = self.freqs_cis[None, :seq_length, None, :]
|
| 118 |
+
else:
|
| 119 |
+
# TODO(kunhao): Should None follow the num_heads dimension?
|
| 120 |
+
if position_ids[-1, -1] < 0 or position_ids[-1, -1] >= self.end: # Quick test hopefully
|
| 121 |
+
raise ValueError(f"Position ids must be in the range [0, {self.end}), but got {position_ids}")
|
| 122 |
+
freqs_cis = self.freqs_cis[position_ids][:, :, None, :]
|
| 123 |
+
complex_freqs = torch.view_as_complex(freqs_cis)
|
| 124 |
+
x_out = torch.view_as_real(complex_x * complex_freqs).view(batch_size, seq_length, num_heads, inner_dim)
|
| 125 |
+
return x_out.type(dtype)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class GLUActivation(nn.Module):
|
| 129 |
+
def __init__(self, act_fn_name: str):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.act = ACT2FN[act_fn_name]
|
| 132 |
+
|
| 133 |
+
def forward(self, merged_states: torch.Tensor):
|
| 134 |
+
gate_states, up_states = torch.split(merged_states, merged_states.shape[-1] // 2, dim=-1)
|
| 135 |
+
return self.act(gate_states) * up_states
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class MLP(nn.Module):
|
| 139 |
+
def __init__(
|
| 140 |
+
self,
|
| 141 |
+
config: MistralConfig,
|
| 142 |
+
parallel_config: Optional[ParallelismArgs],
|
| 143 |
+
tp_pg: dist.ProcessGroup,
|
| 144 |
+
):
|
| 145 |
+
super().__init__()
|
| 146 |
+
|
| 147 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
| 148 |
+
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
| 149 |
+
tp_linear_async_communication = (
|
| 150 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
gate_up_contiguous_chunks = (
|
| 154 |
+
config.intermediate_size, # shape of gate_linear
|
| 155 |
+
config.intermediate_size, # shape of up_linear
|
| 156 |
+
)
|
| 157 |
+
self.gate_up_proj = TensorParallelColumnLinear(
|
| 158 |
+
config.hidden_size,
|
| 159 |
+
2 * config.intermediate_size,
|
| 160 |
+
pg=tp_pg,
|
| 161 |
+
mode=tp_mode,
|
| 162 |
+
bias=False,
|
| 163 |
+
async_communication=tp_linear_async_communication,
|
| 164 |
+
contiguous_chunks=gate_up_contiguous_chunks,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
self.down_proj = TensorParallelRowLinear(
|
| 168 |
+
config.intermediate_size,
|
| 169 |
+
config.hidden_size,
|
| 170 |
+
pg=tp_pg,
|
| 171 |
+
mode=tp_mode,
|
| 172 |
+
bias=False,
|
| 173 |
+
async_communication=tp_linear_async_communication and tp_mode is TensorParallelLinearMode.REDUCE_SCATTER,
|
| 174 |
+
)
|
| 175 |
+
# TODO @nouamane: why can't we torch.jit.script GLUActivation?
|
| 176 |
+
self.split_silu_mul = GLUActivation(config.hidden_act)
|
| 177 |
+
|
| 178 |
+
def forward(self, hidden_states): # [seq_length, batch_size, hidden_dim]
|
| 179 |
+
merged_states = self.gate_up_proj(hidden_states)
|
| 180 |
+
hidden_states = self.down_proj(self.split_silu_mul(merged_states))
|
| 181 |
+
return {"hidden_states": hidden_states}
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class CoreAttention(nn.Module):
|
| 185 |
+
def __init__(self, config: MistralConfig, parallel_config: Optional[ParallelismArgs], layer_idx: int):
|
| 186 |
+
super().__init__()
|
| 187 |
+
# TODO @thomasw21: GPT has a weird `d_kv` config which I'm guessing is essentically a `d_qkv`
|
| 188 |
+
assert (
|
| 189 |
+
config.hidden_size % config.num_attention_heads == 0
|
| 190 |
+
), f"Hidden size {config.hidden_size} must be divisible by number of attention heads {config.num_attention_heads}."
|
| 191 |
+
self.d_qk = config.hidden_size // config.num_attention_heads
|
| 192 |
+
self.d_v = config.hidden_size // config.num_attention_heads
|
| 193 |
+
|
| 194 |
+
self.checkpoint_attention = False # Because flash_attn already does checkpointing
|
| 195 |
+
|
| 196 |
+
@checkpoint_method(attr_name="checkpoint_attention")
|
| 197 |
+
def forward(
|
| 198 |
+
self,
|
| 199 |
+
query_states: torch.Tensor, # [batch_size * q_length, n_local_q_heads, inner_dim]
|
| 200 |
+
key_states: torch.Tensor, # [batch_size * kv_length, n_local_kv_heads, inner_dim]
|
| 201 |
+
value_states: torch.Tensor, # [batch_size * kv_length, n_local_kv_heads, inner_dim]
|
| 202 |
+
q_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, q_length] (can be broadcasted to that size)
|
| 203 |
+
kv_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, kv_length] (can be broadcasted to that size)
|
| 204 |
+
):
|
| 205 |
+
# TODO @thomasw21: Compute once, instead of computing for each layers.
|
| 206 |
+
cu_seqlens_q = torch.zeros((q_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
|
| 207 |
+
cu_seqlens_k = torch.zeros((kv_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
|
| 208 |
+
torch.cumsum(q_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_q[1:])
|
| 209 |
+
torch.cumsum(kv_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_k[1:])
|
| 210 |
+
|
| 211 |
+
# TODO(kunhao): flash attn's causal means that the query can only attend to the keys before it. This is not
|
| 212 |
+
# what we want if we are using kv cache. This is a hack as we always have q_length == 1 when using kv cache.
|
| 213 |
+
causal = False if q_sequence_mask.shape[1] == 1 else True
|
| 214 |
+
attn_output = flash_attn_varlen_func(
|
| 215 |
+
q=query_states,
|
| 216 |
+
k=key_states,
|
| 217 |
+
v=value_states,
|
| 218 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 219 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 220 |
+
max_seqlen_q=q_sequence_mask.shape[1],
|
| 221 |
+
max_seqlen_k=kv_sequence_mask.shape[1],
|
| 222 |
+
dropout_p=0.0,
|
| 223 |
+
softmax_scale=None, # This already defaults to the scale I'm interested in
|
| 224 |
+
causal=causal,
|
| 225 |
+
return_attn_probs=False,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
return attn_output
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def pad_to_right(tensor, mask, new_tensor=None):
|
| 232 |
+
"""Transform a left-padded tensor into a right-padded tensor. (Useful for prefilling key/value states)
|
| 233 |
+
Args:
|
| 234 |
+
tensor: (batch_size, seqlen, d1, d2)
|
| 235 |
+
mask: (batch_size, seqlen)
|
| 236 |
+
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
|
| 237 |
+
Returns:
|
| 238 |
+
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
|
| 239 |
+
right_padded_mask: (batch_size, seqlen)
|
| 240 |
+
"""
|
| 241 |
+
# First, we need to find the number of padding for each row
|
| 242 |
+
unpad_seqlens = mask.sum(1)
|
| 243 |
+
# Then, we need to find the maximum length of the tensor
|
| 244 |
+
max_seqlen = mask.shape[1]
|
| 245 |
+
# We can then create the indices to select the padded values
|
| 246 |
+
# The indices are the same for each row
|
| 247 |
+
indices = torch.arange(max_seqlen, device=mask.device)
|
| 248 |
+
# We can then create the mask for the padded values
|
| 249 |
+
right_padded_mask = indices < unpad_seqlens[:, None]
|
| 250 |
+
# We select the useful values
|
| 251 |
+
useful_values = tensor[mask]
|
| 252 |
+
# We create the new tensor (if not provided)
|
| 253 |
+
new_tensor = torch.zeros_like(tensor) if new_tensor is None else new_tensor
|
| 254 |
+
# We fill the new tensor with the useful values
|
| 255 |
+
new_tensor[:, : right_padded_mask.shape[1], :, :][right_padded_mask] = useful_values
|
| 256 |
+
return new_tensor, right_padded_mask
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class CausalSelfAttention(nn.Module, AttachableStore):
|
| 260 |
+
def __init__(
|
| 261 |
+
self,
|
| 262 |
+
config: MistralConfig,
|
| 263 |
+
parallel_config: Optional[ParallelismArgs],
|
| 264 |
+
tp_pg: dist.ProcessGroup,
|
| 265 |
+
layer_idx: int,
|
| 266 |
+
):
|
| 267 |
+
super().__init__()
|
| 268 |
+
# Tensor parallel considerations: We split tensors along head dimension
|
| 269 |
+
assert (
|
| 270 |
+
config.num_attention_heads % tp_pg.size() == 0
|
| 271 |
+
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by TP size ({tp_pg.size()})."
|
| 272 |
+
try:
|
| 273 |
+
assert (
|
| 274 |
+
config.num_key_value_heads % tp_pg.size() == 0
|
| 275 |
+
), f"Number of key/value heads ({config.num_key_value_heads}) must be divisible by TP size ({tp_pg.size()})."
|
| 276 |
+
except AttributeError:
|
| 277 |
+
log_rank(
|
| 278 |
+
"WARNING: num_key_value_heads not defined, assuming it is equal to num_attention_heads",
|
| 279 |
+
logger=logger,
|
| 280 |
+
level=logging.WARNING,
|
| 281 |
+
rank=0,
|
| 282 |
+
)
|
| 283 |
+
# If num_key_value_heads is not defined, we assume that it is equal to num_attention_heads
|
| 284 |
+
config.num_key_value_heads = config.num_attention_heads
|
| 285 |
+
assert (
|
| 286 |
+
config.num_attention_heads % config.num_key_value_heads == 0
|
| 287 |
+
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of key/value heads ({config.num_key_value_heads})."
|
| 288 |
+
self.n_local_q_heads = config.num_attention_heads // tp_pg.size()
|
| 289 |
+
self.n_local_kv_heads = config.num_key_value_heads // tp_pg.size()
|
| 290 |
+
self.n_repeats = config.num_attention_heads // config.num_key_value_heads
|
| 291 |
+
self.is_gqa = config.num_attention_heads != config.num_key_value_heads # Whether we are using GQA or not
|
| 292 |
+
self.d_qk = config.hidden_size // config.num_attention_heads
|
| 293 |
+
self.d_v = config.hidden_size // config.num_attention_heads
|
| 294 |
+
self.d_model = config.hidden_size
|
| 295 |
+
|
| 296 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
| 297 |
+
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
| 298 |
+
tp_linear_async_communication = (
|
| 299 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# build the slice config for self.qkv for save/load
|
| 303 |
+
# shard are done within the contiguous chunk
|
| 304 |
+
qkv_contiguous_chunks = (
|
| 305 |
+
config.num_attention_heads * self.d_qk, # shape of q
|
| 306 |
+
config.num_key_value_heads * self.d_qk, # shape of k
|
| 307 |
+
config.num_key_value_heads * self.d_qk, # shape of v
|
| 308 |
+
)
|
| 309 |
+
self.qkv_proj = TensorParallelColumnLinear(
|
| 310 |
+
self.d_model,
|
| 311 |
+
config.num_attention_heads * self.d_qk + 2 * config.num_key_value_heads * self.d_qk,
|
| 312 |
+
pg=tp_pg,
|
| 313 |
+
mode=tp_mode,
|
| 314 |
+
bias=False,
|
| 315 |
+
async_communication=tp_linear_async_communication,
|
| 316 |
+
contiguous_chunks=qkv_contiguous_chunks,
|
| 317 |
+
)
|
| 318 |
+
# TODO(kunhao): We want to have only one version per device and not one version per layer.
|
| 319 |
+
self.rotary_embedding = RotaryEmbedding(
|
| 320 |
+
dim=self.d_qk,
|
| 321 |
+
end=config.max_position_embeddings,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# NOTE: Only supported for training (TODO(fmom): position_ids not supported yet)
|
| 325 |
+
self.flash_rotary_embedding = FlashRotaryEmbedding(dim=self.d_qk, interleaved=True)
|
| 326 |
+
|
| 327 |
+
self.o_proj = TensorParallelRowLinear(
|
| 328 |
+
config.num_attention_heads * self.d_qk,
|
| 329 |
+
self.d_model,
|
| 330 |
+
pg=tp_pg,
|
| 331 |
+
mode=tp_mode,
|
| 332 |
+
bias=False,
|
| 333 |
+
async_communication=tp_linear_async_communication,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
self.attention = CoreAttention(
|
| 337 |
+
config,
|
| 338 |
+
parallel_config=parallel_config,
|
| 339 |
+
layer_idx=layer_idx,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
self.prefill_kv_len = (
|
| 343 |
+
config.max_position_embeddings
|
| 344 |
+
) # TODO @nouamane: compute based on free memory, because in rope we can surpass max_position_embeddings
|
| 345 |
+
|
| 346 |
+
def forward(
|
| 347 |
+
self,
|
| 348 |
+
hidden_states, # [seq_length, batch_size, hidden_size]
|
| 349 |
+
sequence_mask, # [batch_size, seq_length]
|
| 350 |
+
):
|
| 351 |
+
qkv_states = self.qkv_proj(
|
| 352 |
+
hidden_states
|
| 353 |
+
) # [seq_length, batch_size, n_local_q_heads * d_qk + 2 * n_local_kv_heads * d_qk]
|
| 354 |
+
q_length, batch_size, _ = qkv_states.shape
|
| 355 |
+
|
| 356 |
+
if self.is_gqa:
|
| 357 |
+
query_states, key_states, value_states = torch.split(
|
| 358 |
+
qkv_states,
|
| 359 |
+
[
|
| 360 |
+
self.n_local_q_heads * self.d_qk,
|
| 361 |
+
self.n_local_kv_heads * self.d_qk,
|
| 362 |
+
self.n_local_kv_heads * self.d_qk,
|
| 363 |
+
],
|
| 364 |
+
dim=-1,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
query_states = (
|
| 368 |
+
query_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_q_heads, self.d_qk)
|
| 369 |
+
)
|
| 370 |
+
key_states = (
|
| 371 |
+
key_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
|
| 372 |
+
)
|
| 373 |
+
value_states = (
|
| 374 |
+
value_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
|
| 375 |
+
)
|
| 376 |
+
else:
|
| 377 |
+
query_states, key_states, value_states = (
|
| 378 |
+
qkv_states.view(q_length, batch_size, 3, self.n_local_q_heads, self.d_qk)
|
| 379 |
+
.permute(2, 1, 0, 3, 4)
|
| 380 |
+
.contiguous()
|
| 381 |
+
) # [3, batch_size, seq_length, n_local_q_heads, d_qk]
|
| 382 |
+
|
| 383 |
+
store = self.get_local_store()
|
| 384 |
+
if store is not None: # Inference case
|
| 385 |
+
# Double check that we use store only at inference time
|
| 386 |
+
assert key_states.requires_grad is False
|
| 387 |
+
assert value_states.requires_grad is False
|
| 388 |
+
print("Using store")
|
| 389 |
+
if "position_offsets" in store:
|
| 390 |
+
old_position_offsets = store["position_offsets"]
|
| 391 |
+
position_ids = old_position_offsets[:, None] + sequence_mask
|
| 392 |
+
else:
|
| 393 |
+
position_ids = torch.cumsum(sequence_mask, dim=-1, dtype=torch.int32) - 1
|
| 394 |
+
position_offsets = position_ids[:, -1]
|
| 395 |
+
|
| 396 |
+
# Compute rotary embeddings
|
| 397 |
+
# Note: keep track of old rotary embedding end to check if we need to enlarge k_cache and v_cache
|
| 398 |
+
old_rotary_embed_end = self.rotary_embedding.end
|
| 399 |
+
query_states = self.rotary_embedding(query_states, position_ids=position_ids)
|
| 400 |
+
key_states = self.rotary_embedding(key_states, position_ids=position_ids)
|
| 401 |
+
|
| 402 |
+
if "key" not in store:
|
| 403 |
+
# First inference iteration (Prefill)
|
| 404 |
+
# TODO @nouamane: support custom masking
|
| 405 |
+
# assert that [ False, False, False, False, True, True, True, True, True, True] is accepted
|
| 406 |
+
# but [ False, False, False, False, True, True, False, False, True, True] is not (can't mask in the middle of sequence)
|
| 407 |
+
assert ~(
|
| 408 |
+
sequence_mask[:, :-1] & (~sequence_mask[:, 1:]) # True is never followed by False
|
| 409 |
+
).any(), "Can't mask in the middle of sequence, please make sure that pads are at the left of the sequence if existing"
|
| 410 |
+
|
| 411 |
+
# preallocate k_cache, v_cache to self.prefill_kv_len
|
| 412 |
+
k_cache = torch.zeros(
|
| 413 |
+
(
|
| 414 |
+
batch_size,
|
| 415 |
+
self.prefill_kv_len,
|
| 416 |
+
self.n_local_kv_heads,
|
| 417 |
+
self.d_qk,
|
| 418 |
+
),
|
| 419 |
+
dtype=query_states.dtype,
|
| 420 |
+
device=query_states.device,
|
| 421 |
+
)
|
| 422 |
+
v_cache = torch.zeros(
|
| 423 |
+
(batch_size, self.prefill_kv_len, self.n_local_kv_heads, self.d_v),
|
| 424 |
+
dtype=query_states.dtype,
|
| 425 |
+
device=query_states.device,
|
| 426 |
+
)
|
| 427 |
+
# Remove pad tokens from key_states and concatenate samples in key_unpad
|
| 428 |
+
# cu_seqlens_k is the cumulative sequence lengths of key_states
|
| 429 |
+
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(
|
| 430 |
+
query_states,
|
| 431 |
+
sequence_mask,
|
| 432 |
+
)
|
| 433 |
+
(key_unpad, indices_k, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(
|
| 434 |
+
key_states, sequence_mask
|
| 435 |
+
)
|
| 436 |
+
(value_unpad, _, _, _) = bert_padding.unpad_input(value_states, sequence_mask)
|
| 437 |
+
|
| 438 |
+
output_unpad = flash_attn_varlen_func(
|
| 439 |
+
q=query_unpad, # (total_q, n_local_q_heads, d_qk)
|
| 440 |
+
k=key_unpad, # (total_kv, n_local_kv_heads, d_qk)
|
| 441 |
+
v=value_unpad, # (total_kv, n_local_kv_heads, d_v)
|
| 442 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 443 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 444 |
+
max_seqlen_q=max_seqlen_q,
|
| 445 |
+
max_seqlen_k=max_seqlen_k,
|
| 446 |
+
dropout_p=0.0,
|
| 447 |
+
softmax_scale=None,
|
| 448 |
+
causal=True, # True in prefill phase, False in subsequent phases
|
| 449 |
+
return_attn_probs=False,
|
| 450 |
+
) # (total_unpadded, n_local_q_heads, d_v)
|
| 451 |
+
|
| 452 |
+
attention_output = bert_padding.pad_input(
|
| 453 |
+
output_unpad, indices_q, batch_size, q_length
|
| 454 |
+
) # (batch_size, q_length, n_local_q_heads, d_v)
|
| 455 |
+
|
| 456 |
+
pad_to_right(key_states, sequence_mask, new_tensor=k_cache)
|
| 457 |
+
pad_to_right(value_states, sequence_mask, new_tensor=v_cache)
|
| 458 |
+
|
| 459 |
+
else:
|
| 460 |
+
# Pull pre-computed key/value states
|
| 461 |
+
# Subsequent inference iterations (q_length=1)
|
| 462 |
+
k_cache = store["key"]
|
| 463 |
+
v_cache = store["value"]
|
| 464 |
+
|
| 465 |
+
# NOTE(fmom): According to flash_attn_with_kvcache, "If you pass in k / v, you must make sure that the cache is large enough to hold the new values"
|
| 466 |
+
# Since rotary embedding has changed (to enable larger context), we need to enlarge k_cache and v_cache
|
| 467 |
+
if self.rotary_embedding.end > old_rotary_embed_end:
|
| 468 |
+
k_cache = torch.cat(
|
| 469 |
+
[
|
| 470 |
+
k_cache,
|
| 471 |
+
torch.zeros(
|
| 472 |
+
(
|
| 473 |
+
batch_size,
|
| 474 |
+
self.rotary_embedding.end - old_rotary_embed_end,
|
| 475 |
+
self.n_local_kv_heads,
|
| 476 |
+
self.d_qk,
|
| 477 |
+
),
|
| 478 |
+
dtype=query_states.dtype,
|
| 479 |
+
device=query_states.device,
|
| 480 |
+
),
|
| 481 |
+
],
|
| 482 |
+
dim=1,
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
v_cache = torch.cat(
|
| 486 |
+
[
|
| 487 |
+
v_cache,
|
| 488 |
+
torch.zeros(
|
| 489 |
+
(
|
| 490 |
+
batch_size,
|
| 491 |
+
self.rotary_embedding.end - old_rotary_embed_end,
|
| 492 |
+
self.n_local_kv_heads,
|
| 493 |
+
self.d_v,
|
| 494 |
+
),
|
| 495 |
+
dtype=query_states.dtype,
|
| 496 |
+
device=query_states.device,
|
| 497 |
+
),
|
| 498 |
+
],
|
| 499 |
+
dim=1,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
assert (
|
| 503 |
+
k_cache.shape[1] == self.rotary_embedding.end
|
| 504 |
+
), f"Cache size {k_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
|
| 505 |
+
assert (
|
| 506 |
+
v_cache.shape[1] == self.rotary_embedding.end
|
| 507 |
+
), f"Cache size {v_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
|
| 508 |
+
|
| 509 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
| 510 |
+
query_states = query_states.view(
|
| 511 |
+
batch_size, q_length, self.n_local_q_heads, self.d_qk
|
| 512 |
+
) # [batch_size, q_length, self.n_heads, d_qk]
|
| 513 |
+
kv_length = key_states.shape[1]
|
| 514 |
+
key_states = key_states.view(
|
| 515 |
+
batch_size, kv_length, self.n_local_kv_heads, self.d_qk
|
| 516 |
+
) # [batch_size, kv_length, self.n_heads, d_qk]
|
| 517 |
+
value_states = value_states.view(
|
| 518 |
+
batch_size, kv_length, self.n_local_kv_heads, self.d_v
|
| 519 |
+
) # [batch_size, kv_length, self.n_heads, d_v]
|
| 520 |
+
|
| 521 |
+
attention_output = flash_attn_with_kvcache(
|
| 522 |
+
query_states,
|
| 523 |
+
k_cache,
|
| 524 |
+
v_cache,
|
| 525 |
+
key_states,
|
| 526 |
+
value_states,
|
| 527 |
+
rotary_cos=None,
|
| 528 |
+
rotary_sin=None,
|
| 529 |
+
# TODO @nouamane: seems like this doesnt help to indicate padding in (for first iteration it's just 0)
|
| 530 |
+
cache_seqlens=position_offsets.contiguous(),
|
| 531 |
+
softmax_scale=None,
|
| 532 |
+
causal=True,
|
| 533 |
+
rotary_interleaved=False, # GPT-NeoX style
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
store.update(
|
| 537 |
+
{
|
| 538 |
+
"key": k_cache, # flash-attn has updated with new key_states using cache_seqlens
|
| 539 |
+
"value": v_cache,
|
| 540 |
+
"position_offsets": position_offsets,
|
| 541 |
+
}
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
else: # Training case
|
| 545 |
+
# Apply rotary embeddings to query/key states
|
| 546 |
+
# NOTE: The layout is different from models/mistral.py which is [batch_size, num_heads, seq_length, d_qk]
|
| 547 |
+
# Here it is, [batch_size, seq_length, num_heads, d_qk]
|
| 548 |
+
# [2, batch_size, seq_length, num_heads, d_qk]
|
| 549 |
+
key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
|
| 550 |
+
# [batch_size, seq_length, 2, num_heads, d_qk]
|
| 551 |
+
key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
|
| 552 |
+
query_states, key_value_states = self.flash_rotary_embedding(query_states, kv=key_value_states)
|
| 553 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
| 554 |
+
key_states, value_states = torch.split(key_value_states, 1, dim=2)
|
| 555 |
+
|
| 556 |
+
q_sequence_mask = sequence_mask
|
| 557 |
+
kv_sequence_mask = sequence_mask
|
| 558 |
+
|
| 559 |
+
kv_length = key_states.shape[1]
|
| 560 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
| 561 |
+
# Shaping for use in `flash-attn` version of flash-attn: `flash_attn_unpadded_func`
|
| 562 |
+
query_states = query_states.view(
|
| 563 |
+
batch_size * q_length, self.n_local_q_heads, self.d_qk
|
| 564 |
+
) # [batch_size * q_length, self.n_heads, d_qk]
|
| 565 |
+
|
| 566 |
+
key_states = key_states.view(
|
| 567 |
+
batch_size * kv_length, self.n_local_kv_heads, self.d_qk
|
| 568 |
+
) # [batch_size * kv_length, self.n_heads, d_qk]
|
| 569 |
+
value_states = value_states.view(
|
| 570 |
+
batch_size * kv_length, self.n_local_kv_heads, self.d_v
|
| 571 |
+
) # [batch_size * kv_length, self.n_heads, d_v]
|
| 572 |
+
|
| 573 |
+
attention_output = self.attention(
|
| 574 |
+
query_states=query_states,
|
| 575 |
+
key_states=key_states,
|
| 576 |
+
value_states=value_states,
|
| 577 |
+
q_sequence_mask=q_sequence_mask,
|
| 578 |
+
kv_sequence_mask=kv_sequence_mask,
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
attention_output = (
|
| 582 |
+
attention_output.contiguous().view(batch_size, q_length, self.n_local_q_heads * self.d_v).transpose(0, 1)
|
| 583 |
+
)
|
| 584 |
+
output = self.o_proj(attention_output)
|
| 585 |
+
|
| 586 |
+
return {"hidden_states": output, "sequence_mask": sequence_mask}
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
class MistralDecoderLayer(nn.Module):
|
| 590 |
+
def __init__(
|
| 591 |
+
self,
|
| 592 |
+
config: MistralConfig,
|
| 593 |
+
parallel_config: Optional[ParallelismArgs],
|
| 594 |
+
tp_pg: dist.ProcessGroup,
|
| 595 |
+
layer_idx: int,
|
| 596 |
+
):
|
| 597 |
+
super().__init__()
|
| 598 |
+
self.input_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 599 |
+
self.attn = CausalSelfAttention(
|
| 600 |
+
config=config,
|
| 601 |
+
parallel_config=parallel_config,
|
| 602 |
+
tp_pg=tp_pg,
|
| 603 |
+
layer_idx=layer_idx,
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
self.post_attention_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 607 |
+
self.mlp = MLP(config=config, parallel_config=parallel_config, tp_pg=tp_pg)
|
| 608 |
+
|
| 609 |
+
def forward(
|
| 610 |
+
self,
|
| 611 |
+
hidden_states: Union[torch.Tensor, TensorPointer],
|
| 612 |
+
sequence_mask: Union[torch.Tensor, TensorPointer],
|
| 613 |
+
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
|
| 614 |
+
residual = hidden_states
|
| 615 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 616 |
+
|
| 617 |
+
output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
| 618 |
+
hidden_states = output["hidden_states"]
|
| 619 |
+
hidden_states = hidden_states + residual
|
| 620 |
+
|
| 621 |
+
residual = hidden_states
|
| 622 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 623 |
+
hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
|
| 624 |
+
hidden_states = hidden_states + residual
|
| 625 |
+
|
| 626 |
+
return {
|
| 627 |
+
"hidden_states": hidden_states,
|
| 628 |
+
"sequence_mask": output["sequence_mask"],
|
| 629 |
+
}
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
class Embedding(nn.Module, AttachableStore):
|
| 633 |
+
def __init__(self, tp_pg: dist.ProcessGroup, config: MistralConfig, parallel_config: Optional[ParallelismArgs]):
|
| 634 |
+
super().__init__()
|
| 635 |
+
self.token_embedding = TensorParallelEmbedding(
|
| 636 |
+
num_embeddings=config.vocab_size,
|
| 637 |
+
embedding_dim=config.hidden_size,
|
| 638 |
+
padding_idx=config.pad_token_id,
|
| 639 |
+
pg=tp_pg,
|
| 640 |
+
mode=parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE,
|
| 641 |
+
)
|
| 642 |
+
self.pg = tp_pg
|
| 643 |
+
|
| 644 |
+
def forward(self, input_ids: torch.Tensor, input_mask: torch.Tensor): # [batch_size, seq_length]
|
| 645 |
+
store = self.get_local_store()
|
| 646 |
+
if store is not None:
|
| 647 |
+
if "past_length" in store:
|
| 648 |
+
past_length = store["past_length"]
|
| 649 |
+
else:
|
| 650 |
+
past_length = torch.zeros(1, dtype=torch.long, device=input_ids.device).expand(input_ids.shape[0])
|
| 651 |
+
|
| 652 |
+
cumsum_mask = input_mask.cumsum(-1, dtype=torch.long)
|
| 653 |
+
# Store new past_length in store
|
| 654 |
+
store["past_length"] = past_length + cumsum_mask[:, -1]
|
| 655 |
+
|
| 656 |
+
# Format input in `[seq_length, batch_size]` to support high TP with low batch_size
|
| 657 |
+
input_ids = input_ids.transpose(0, 1)
|
| 658 |
+
input_embeds = self.token_embedding(input_ids)
|
| 659 |
+
return {"input_embeds": input_embeds}
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
class MistralModel(nn.Module):
|
| 663 |
+
"""Build pipeline graph"""
|
| 664 |
+
|
| 665 |
+
def __init__(
|
| 666 |
+
self,
|
| 667 |
+
config: MistralConfig,
|
| 668 |
+
parallel_context: ParallelContext,
|
| 669 |
+
parallel_config: Optional[ParallelismArgs],
|
| 670 |
+
):
|
| 671 |
+
super().__init__()
|
| 672 |
+
|
| 673 |
+
# Declare all the nodes
|
| 674 |
+
self.p2p = P2P(parallel_context.pp_pg, device=torch.device("cuda"))
|
| 675 |
+
self.config = config
|
| 676 |
+
self.parallel_config = parallel_config
|
| 677 |
+
self.parallel_context = parallel_context
|
| 678 |
+
self.tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
| 679 |
+
tp_linear_async_communication = (
|
| 680 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
self.token_position_embeddings = PipelineBlock(
|
| 684 |
+
p2p=self.p2p,
|
| 685 |
+
module_builder=Embedding,
|
| 686 |
+
module_kwargs={
|
| 687 |
+
"tp_pg": parallel_context.tp_pg,
|
| 688 |
+
"config": config,
|
| 689 |
+
"parallel_config": parallel_config,
|
| 690 |
+
},
|
| 691 |
+
module_input_keys={"input_ids", "input_mask"},
|
| 692 |
+
module_output_keys={"input_embeds"},
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
+
self.decoder = nn.ModuleList(
|
| 696 |
+
[
|
| 697 |
+
PipelineBlock(
|
| 698 |
+
p2p=self.p2p,
|
| 699 |
+
module_builder=MistralDecoderLayer,
|
| 700 |
+
module_kwargs={
|
| 701 |
+
"config": config,
|
| 702 |
+
"parallel_config": parallel_config,
|
| 703 |
+
"tp_pg": parallel_context.tp_pg,
|
| 704 |
+
"layer_idx": layer_idx,
|
| 705 |
+
},
|
| 706 |
+
module_input_keys={"hidden_states", "sequence_mask"},
|
| 707 |
+
module_output_keys={"hidden_states", "sequence_mask"},
|
| 708 |
+
)
|
| 709 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 710 |
+
]
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
self.final_layer_norm = PipelineBlock(
|
| 714 |
+
p2p=self.p2p,
|
| 715 |
+
module_builder=TritonRMSNorm,
|
| 716 |
+
module_kwargs={"hidden_size": config.hidden_size, "eps": config.rms_norm_eps},
|
| 717 |
+
module_input_keys={"input"},
|
| 718 |
+
module_output_keys={"hidden_states"},
|
| 719 |
+
) # TODO
|
| 720 |
+
|
| 721 |
+
self.lm_head = PipelineBlock(
|
| 722 |
+
p2p=self.p2p,
|
| 723 |
+
# Understand that this means that we return sharded logits that are going to need to be gathered
|
| 724 |
+
module_builder=TensorParallelColumnLinear,
|
| 725 |
+
module_kwargs={
|
| 726 |
+
"in_features": config.hidden_size,
|
| 727 |
+
"out_features": config.vocab_size,
|
| 728 |
+
"pg": parallel_context.tp_pg,
|
| 729 |
+
"bias": False,
|
| 730 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
| 731 |
+
"mode": self.tp_mode,
|
| 732 |
+
"async_communication": tp_linear_async_communication,
|
| 733 |
+
},
|
| 734 |
+
module_input_keys={"x"},
|
| 735 |
+
module_output_keys={"logits"},
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
self.cast_to_fp32 = PipelineBlock(
|
| 739 |
+
p2p=self.p2p,
|
| 740 |
+
module_builder=lambda: lambda x: x.float(),
|
| 741 |
+
module_kwargs={},
|
| 742 |
+
module_input_keys={"x"},
|
| 743 |
+
module_output_keys={"output"},
|
| 744 |
+
)
|
| 745 |
+
|
| 746 |
+
def forward(
|
| 747 |
+
self,
|
| 748 |
+
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
| 749 |
+
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
| 750 |
+
):
|
| 751 |
+
return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
| 752 |
+
|
| 753 |
+
def forward_with_hidden_states(
|
| 754 |
+
self,
|
| 755 |
+
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
| 756 |
+
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
| 757 |
+
):
|
| 758 |
+
# all tensors are optional as most ranks don't need anything from the dataloader.
|
| 759 |
+
|
| 760 |
+
output = self.token_position_embeddings(input_ids=input_ids, input_mask=input_mask)
|
| 761 |
+
|
| 762 |
+
hidden_encoder_states = {
|
| 763 |
+
"hidden_states": output["input_embeds"],
|
| 764 |
+
"sequence_mask": input_mask,
|
| 765 |
+
}
|
| 766 |
+
for encoder_block in self.decoder:
|
| 767 |
+
hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
| 768 |
+
|
| 769 |
+
hidden_states = self.final_layer_norm(input=hidden_encoder_states["hidden_states"])["hidden_states"]
|
| 770 |
+
|
| 771 |
+
sharded_logits = self.lm_head(x=hidden_states)["logits"]
|
| 772 |
+
|
| 773 |
+
fp32_sharded_logits = self.cast_to_fp32(x=sharded_logits)["output"]
|
| 774 |
+
|
| 775 |
+
return fp32_sharded_logits, hidden_states
|
| 776 |
+
|
| 777 |
+
def get_block_compute_costs(self):
|
| 778 |
+
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
|
| 779 |
+
model_config = self.config
|
| 780 |
+
d_ff = model_config.intermediate_size
|
| 781 |
+
d_qkv = model_config.hidden_size // model_config.num_attention_heads
|
| 782 |
+
block_compute_costs = {
|
| 783 |
+
# CausalSelfAttention (qkv proj + attn out) + MLP
|
| 784 |
+
MistralDecoderLayer: 4 * model_config.num_attention_heads * d_qkv * model_config.hidden_size
|
| 785 |
+
+ 3 * d_ff * model_config.hidden_size,
|
| 786 |
+
# This is the last lm_head
|
| 787 |
+
TensorParallelColumnLinear: model_config.vocab_size * model_config.hidden_size,
|
| 788 |
+
}
|
| 789 |
+
return block_compute_costs
|
| 790 |
+
|
| 791 |
+
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
|
| 792 |
+
"""Get flops per second for a given model"""
|
| 793 |
+
world_size = self.parallel_context.world_pg.size()
|
| 794 |
+
try:
|
| 795 |
+
num_key_values_heads = self.config.num_key_value_heads
|
| 796 |
+
except AttributeError:
|
| 797 |
+
num_key_values_heads = self.config.num_attention_heads
|
| 798 |
+
|
| 799 |
+
model_flops, hardware_flops = get_flops(
|
| 800 |
+
num_layers=self.config.num_hidden_layers,
|
| 801 |
+
hidden_size=self.config.hidden_size,
|
| 802 |
+
num_heads=self.config.num_attention_heads,
|
| 803 |
+
num_key_value_heads=num_key_values_heads,
|
| 804 |
+
vocab_size=self.config.vocab_size,
|
| 805 |
+
ffn_hidden_size=self.config.intermediate_size,
|
| 806 |
+
seq_len=sequence_length,
|
| 807 |
+
batch_size=global_batch_size,
|
| 808 |
+
recompute_granularity=self.parallel_config.recompute_granularity,
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
model_flops_per_s = model_flops / (iteration_time_in_sec * world_size * 1e12)
|
| 812 |
+
hardware_flops_per_s = hardware_flops / (iteration_time_in_sec * world_size * 1e12)
|
| 813 |
+
return model_flops_per_s, hardware_flops_per_s
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
@torch.jit.script
|
| 817 |
+
def masked_mean(loss, label_mask, dtype):
|
| 818 |
+
# type: (Tensor, Tensor, torch.dtype) -> Tensor
|
| 819 |
+
return (loss * label_mask).sum(dtype=dtype) / label_mask.sum()
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
class Loss(nn.Module):
|
| 823 |
+
def __init__(self, tp_pg: dist.ProcessGroup):
|
| 824 |
+
super().__init__()
|
| 825 |
+
self.tp_pg = tp_pg
|
| 826 |
+
|
| 827 |
+
def forward(
|
| 828 |
+
self,
|
| 829 |
+
sharded_logits: torch.Tensor, # [seq_length, batch_size, logits]
|
| 830 |
+
label_ids: torch.Tensor, # [batch_size, seq_length]
|
| 831 |
+
label_mask: torch.Tensor, # [batch_size, seq_length]
|
| 832 |
+
) -> Dict[str, torch.Tensor]:
|
| 833 |
+
# Megatron by defaults cast everything in fp32. `--f16-lm-cross-entropy` is an option you can use to keep current precision.
|
| 834 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/f267e6186eae1d6e2055b412b00e2e545a8e896a/megatron/model/gpt_model.py#L38
|
| 835 |
+
loss = sharded_cross_entropy(
|
| 836 |
+
sharded_logits, label_ids.transpose(0, 1).contiguous(), group=self.tp_pg, dtype=torch.float
|
| 837 |
+
).transpose(0, 1)
|
| 838 |
+
# TODO @thomasw21: It's unclear what kind of normalization we want to do.
|
| 839 |
+
loss = masked_mean(loss, label_mask, dtype=torch.float)
|
| 840 |
+
# I think indexing causes a sync we don't actually want
|
| 841 |
+
# loss = loss[label_mask].sum()
|
| 842 |
+
return {"loss": loss}
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
class MistralForTraining(NanotronModel):
|
| 846 |
+
def __init__(
|
| 847 |
+
self,
|
| 848 |
+
config: MistralConfig,
|
| 849 |
+
parallel_context: ParallelContext,
|
| 850 |
+
parallel_config: Optional[ParallelismArgs],
|
| 851 |
+
random_states: Optional[RandomStates] = None,
|
| 852 |
+
):
|
| 853 |
+
super().__init__()
|
| 854 |
+
import warnings
|
| 855 |
+
warnings.warn("This is just a Llama Model, not a Mistral one for demo purpose. Please fix implementation")
|
| 856 |
+
self.model = MistralModel(config=config, parallel_context=parallel_context, parallel_config=parallel_config)
|
| 857 |
+
self.loss = PipelineBlock(
|
| 858 |
+
p2p=self.model.p2p,
|
| 859 |
+
module_builder=Loss,
|
| 860 |
+
module_kwargs={"tp_pg": parallel_context.tp_pg},
|
| 861 |
+
module_input_keys={
|
| 862 |
+
"sharded_logits",
|
| 863 |
+
"label_ids",
|
| 864 |
+
"label_mask",
|
| 865 |
+
},
|
| 866 |
+
module_output_keys={"loss"},
|
| 867 |
+
)
|
| 868 |
+
self.parallel_context = parallel_context
|
| 869 |
+
self.config = config
|
| 870 |
+
self.parallel_config = parallel_config
|
| 871 |
+
|
| 872 |
+
def forward(
|
| 873 |
+
self,
|
| 874 |
+
input_ids: Union[torch.Tensor, TensorPointer],
|
| 875 |
+
input_mask: Union[torch.Tensor, TensorPointer],
|
| 876 |
+
label_ids: Union[torch.Tensor, TensorPointer],
|
| 877 |
+
label_mask: Union[torch.Tensor, TensorPointer],
|
| 878 |
+
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
|
| 879 |
+
sharded_logits = self.model(
|
| 880 |
+
input_ids=input_ids,
|
| 881 |
+
input_mask=input_mask,
|
| 882 |
+
)
|
| 883 |
+
loss = self.loss(
|
| 884 |
+
sharded_logits=sharded_logits,
|
| 885 |
+
label_ids=label_ids,
|
| 886 |
+
label_mask=label_mask,
|
| 887 |
+
)["loss"]
|
| 888 |
+
return {"loss": loss}
|
| 889 |
+
|
| 890 |
+
@torch.no_grad()
|
| 891 |
+
def init_model_randomly(self, init_method, scaled_init_method):
|
| 892 |
+
"""Initialize model parameters randomly.
|
| 893 |
+
Args:
|
| 894 |
+
init_method (callable): Used for embedding/position/qkv weight in attention/first layer weight of mlp/ /lm_head/
|
| 895 |
+
scaled_init_method (callable): Used for o weight in attention/second layer weight of mlp/
|
| 896 |
+
|
| 897 |
+
Note:
|
| 898 |
+
Layernorm weight all 0 or 1 depending on `apply_layernorm_1p`
|
| 899 |
+
"""
|
| 900 |
+
model = self
|
| 901 |
+
initialized_parameters = set()
|
| 902 |
+
# Handle tensor parallelism
|
| 903 |
+
module_id_to_prefix = {id(module): f"{module_name}." for module_name, module in model.named_modules()}
|
| 904 |
+
# Fix the root_model
|
| 905 |
+
module_id_to_prefix[id(model)] = ""
|
| 906 |
+
|
| 907 |
+
for module_name, module in model.named_modules():
|
| 908 |
+
if isinstance(module, TensorParallelColumnLinear):
|
| 909 |
+
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
|
| 910 |
+
# What it does:
|
| 911 |
+
# - instantiate a buffer of the `full size` in fp32
|
| 912 |
+
# - run init method on it
|
| 913 |
+
# - shard result to get only a specific shard
|
| 914 |
+
# Instead I'm lazy and just going to run init_method, since they are scalar independent
|
| 915 |
+
assert {"weight"} == {name for name, _ in module.named_parameters()} or {"weight"} == {
|
| 916 |
+
name for name, _ in module.named_parameters()
|
| 917 |
+
}
|
| 918 |
+
for param_name, param in module.named_parameters():
|
| 919 |
+
assert isinstance(param, NanotronParameter)
|
| 920 |
+
if param.is_tied:
|
| 921 |
+
tied_info = param.get_tied_info()
|
| 922 |
+
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
|
| 923 |
+
module_id_to_prefix=module_id_to_prefix
|
| 924 |
+
)
|
| 925 |
+
else:
|
| 926 |
+
full_param_name = f"{module_name}.{param_name}"
|
| 927 |
+
|
| 928 |
+
if full_param_name in initialized_parameters:
|
| 929 |
+
# Already initialized
|
| 930 |
+
continue
|
| 931 |
+
|
| 932 |
+
if "weight" == param_name:
|
| 933 |
+
init_method(param)
|
| 934 |
+
elif "bias" == param_name:
|
| 935 |
+
param.zero_()
|
| 936 |
+
else:
|
| 937 |
+
raise ValueError(f"Who the fuck is {param_name}?")
|
| 938 |
+
|
| 939 |
+
assert full_param_name not in initialized_parameters
|
| 940 |
+
initialized_parameters.add(full_param_name)
|
| 941 |
+
elif isinstance(module, TensorParallelRowLinear):
|
| 942 |
+
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
|
| 943 |
+
# What it does:
|
| 944 |
+
# - instantiate a buffer of the `full size` in fp32
|
| 945 |
+
# - run init method on it
|
| 946 |
+
# - shard result to get only a specific shard
|
| 947 |
+
# Instead I'm lazy and just going to run init_method, since they are scalar independent
|
| 948 |
+
assert {"weight"} == {name for name, _ in module.named_parameters()} or {"weight"} == {
|
| 949 |
+
name for name, _ in module.named_parameters()
|
| 950 |
+
}
|
| 951 |
+
for param_name, param in module.named_parameters():
|
| 952 |
+
assert isinstance(param, NanotronParameter)
|
| 953 |
+
if param.is_tied:
|
| 954 |
+
tied_info = param.get_tied_info()
|
| 955 |
+
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
|
| 956 |
+
module_id_to_prefix=module_id_to_prefix
|
| 957 |
+
)
|
| 958 |
+
else:
|
| 959 |
+
full_param_name = f"{module_name}.{param_name}"
|
| 960 |
+
|
| 961 |
+
if full_param_name in initialized_parameters:
|
| 962 |
+
# Already initialized
|
| 963 |
+
continue
|
| 964 |
+
|
| 965 |
+
if "weight" == param_name:
|
| 966 |
+
scaled_init_method(param)
|
| 967 |
+
elif "bias" == param_name:
|
| 968 |
+
param.zero_()
|
| 969 |
+
else:
|
| 970 |
+
raise ValueError(f"Who the fuck is {param_name}?")
|
| 971 |
+
|
| 972 |
+
assert full_param_name not in initialized_parameters
|
| 973 |
+
initialized_parameters.add(full_param_name)
|
| 974 |
+
elif isinstance(module, TritonRMSNorm):
|
| 975 |
+
assert {"weight"} == {name for name, _ in module.named_parameters()}
|
| 976 |
+
for param_name, param in module.named_parameters():
|
| 977 |
+
assert isinstance(param, NanotronParameter)
|
| 978 |
+
if param.is_tied:
|
| 979 |
+
tied_info = param.get_tied_info()
|
| 980 |
+
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
|
| 981 |
+
module_id_to_prefix=module_id_to_prefix
|
| 982 |
+
)
|
| 983 |
+
else:
|
| 984 |
+
full_param_name = f"{module_name}.{param_name}"
|
| 985 |
+
|
| 986 |
+
if full_param_name in initialized_parameters:
|
| 987 |
+
# Already initialized
|
| 988 |
+
continue
|
| 989 |
+
|
| 990 |
+
if "weight" == param_name:
|
| 991 |
+
# TODO @thomasw21: Sometimes we actually want 0
|
| 992 |
+
param.fill_(1)
|
| 993 |
+
elif "bias" == param_name:
|
| 994 |
+
param.zero_()
|
| 995 |
+
else:
|
| 996 |
+
raise ValueError(f"Who the fuck is {param_name}?")
|
| 997 |
+
|
| 998 |
+
assert full_param_name not in initialized_parameters
|
| 999 |
+
initialized_parameters.add(full_param_name)
|
| 1000 |
+
elif isinstance(module, TensorParallelEmbedding):
|
| 1001 |
+
# TODO @thomasw21: Handle tied embeddings
|
| 1002 |
+
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
|
| 1003 |
+
# What it does:
|
| 1004 |
+
# - instantiate a buffer of the `full size` in fp32
|
| 1005 |
+
# - run init method on it
|
| 1006 |
+
# - shard result to get only a specific shard
|
| 1007 |
+
# Instead I'm lazy and just going to run init_method, since they are scalar independent
|
| 1008 |
+
assert {"weight"} == {name for name, _ in module.named_parameters()}
|
| 1009 |
+
|
| 1010 |
+
assert isinstance(module.weight, NanotronParameter)
|
| 1011 |
+
if module.weight.is_tied:
|
| 1012 |
+
tied_info = module.weight.get_tied_info()
|
| 1013 |
+
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
|
| 1014 |
+
module_id_to_prefix=module_id_to_prefix
|
| 1015 |
+
)
|
| 1016 |
+
else:
|
| 1017 |
+
full_param_name = f"{module_name}.weight"
|
| 1018 |
+
|
| 1019 |
+
if full_param_name in initialized_parameters:
|
| 1020 |
+
# Already initialized
|
| 1021 |
+
continue
|
| 1022 |
+
|
| 1023 |
+
init_method(module.weight)
|
| 1024 |
+
assert full_param_name not in initialized_parameters
|
| 1025 |
+
initialized_parameters.add(full_param_name)
|
| 1026 |
+
|
| 1027 |
+
assert initialized_parameters == {
|
| 1028 |
+
param.get_tied_info().get_full_name_from_module_id_to_prefix(module_id_to_prefix=module_id_to_prefix)
|
| 1029 |
+
if param.is_tied
|
| 1030 |
+
else name
|
| 1031 |
+
for name, param in model.named_parameters()
|
| 1032 |
+
}, f"Somehow the initialized set of parameters don't match:\n - Expected: { {name for name, _ in model.named_parameters()} }\n - Got: {initialized_parameters}"
|
| 1033 |
+
|
| 1034 |
+
def get_block_compute_costs(self):
|
| 1035 |
+
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
|
| 1036 |
+
return self.model.get_block_compute_costs()
|
| 1037 |
+
|
| 1038 |
+
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
|
| 1039 |
+
"""Get flops per second for a given model"""
|
| 1040 |
+
return self.model.get_flops_per_sec(iteration_time_in_sec, sequence_length, global_batch_size)
|
| 1041 |
+
|
| 1042 |
+
|
| 1043 |
+
def get_flops(
|
| 1044 |
+
num_layers,
|
| 1045 |
+
hidden_size,
|
| 1046 |
+
num_heads,
|
| 1047 |
+
num_key_value_heads,
|
| 1048 |
+
vocab_size,
|
| 1049 |
+
seq_len,
|
| 1050 |
+
ffn_hidden_size,
|
| 1051 |
+
batch_size=1,
|
| 1052 |
+
recompute_granularity=None,
|
| 1053 |
+
):
|
| 1054 |
+
"""Counts flops in an decoder-only model
|
| 1055 |
+
Args:
|
| 1056 |
+
num_layers: number of decoder layers
|
| 1057 |
+
hidden_size: hidden size of the model
|
| 1058 |
+
num_heads: number of heads in the model
|
| 1059 |
+
num_key_value_heads: number of key/value heads in the model
|
| 1060 |
+
ffn_hidden_size: hidden size of the FFN
|
| 1061 |
+
vocab_size: size of the vocabulary
|
| 1062 |
+
seq_len: sequence length of the decoder
|
| 1063 |
+
batch_size: batch size
|
| 1064 |
+
recompute_granularity: Activation recomputation method. Either None, FULL or SELECTIVE. Check Megatron-LM docs for more info.
|
| 1065 |
+
Returns:
|
| 1066 |
+
model_flops: flops in the model (should be independent of the hardware and model implementation)
|
| 1067 |
+
hardware_flops: flops in the hardware (actual flops performed on the hardware). Check 6.3 in https://arxiv.org/pdf/2205.05198.pdf
|
| 1068 |
+
"""
|
| 1069 |
+
if num_key_value_heads is None:
|
| 1070 |
+
num_key_value_heads = num_heads
|
| 1071 |
+
hidden_size_per_head = hidden_size // num_heads
|
| 1072 |
+
# In the following we mark the reduced dimension with parentheses
|
| 1073 |
+
# decoder
|
| 1074 |
+
# self attention
|
| 1075 |
+
## qkv projection
|
| 1076 |
+
decoder_qkv_proj_flops_fwd = (
|
| 1077 |
+
2 * num_layers * batch_size * seq_len * (hidden_size) * num_heads * hidden_size_per_head
|
| 1078 |
+
+ 2 * num_layers * batch_size * seq_len * (hidden_size) * 2 * num_key_value_heads * hidden_size_per_head
|
| 1079 |
+
)
|
| 1080 |
+
## qk logits
|
| 1081 |
+
decoder_qk_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (hidden_size_per_head) * seq_len
|
| 1082 |
+
## v logits
|
| 1083 |
+
decoder_v_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (seq_len) * hidden_size_per_head
|
| 1084 |
+
## attn out
|
| 1085 |
+
decoder_attn_out_flops_fwd = (
|
| 1086 |
+
2 * num_layers * batch_size * num_heads * seq_len * (hidden_size_per_head) * hidden_size
|
| 1087 |
+
)
|
| 1088 |
+
# FF
|
| 1089 |
+
## 1st layer
|
| 1090 |
+
decoder_ffn_1_flops_fwd = 4 * num_layers * batch_size * seq_len * (hidden_size) * ffn_hidden_size
|
| 1091 |
+
## 2nd layer
|
| 1092 |
+
decoder_ffn_2_flops_fwd = 2 * num_layers * batch_size * seq_len * (ffn_hidden_size) * hidden_size
|
| 1093 |
+
|
| 1094 |
+
decoder_flops_fwd = (
|
| 1095 |
+
decoder_qkv_proj_flops_fwd
|
| 1096 |
+
+ decoder_qk_logits_flops_fwd
|
| 1097 |
+
+ decoder_v_logits_flops_fwd
|
| 1098 |
+
+ decoder_attn_out_flops_fwd
|
| 1099 |
+
+ decoder_ffn_1_flops_fwd
|
| 1100 |
+
+ decoder_ffn_2_flops_fwd
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
# lm head
|
| 1104 |
+
lm_head_flops_fwd = 2 * batch_size * seq_len * (hidden_size) * vocab_size
|
| 1105 |
+
|
| 1106 |
+
# the bwd pass requires double the flops in case of matmuls to calculate the gradients with respect to
|
| 1107 |
+
# both input and weight tensors
|
| 1108 |
+
model_flops = 3 * (decoder_flops_fwd + lm_head_flops_fwd) # 1 for fwd + 2 for bwd
|
| 1109 |
+
|
| 1110 |
+
if recompute_granularity is None:
|
| 1111 |
+
hardware_flops = model_flops
|
| 1112 |
+
elif recompute_granularity is RecomputeGranularity.FULL:
|
| 1113 |
+
# Note: we don't recompute lm head activs
|
| 1114 |
+
hardware_flops = model_flops + decoder_flops_fwd # + activ recomputation
|
| 1115 |
+
elif recompute_granularity is RecomputeGranularity.SELECTIVE:
|
| 1116 |
+
# all terms with s^2 are flops that are recomputed
|
| 1117 |
+
# ref. appendix A: https://arxiv.org/pdf/2205.05198.pdf
|
| 1118 |
+
recomputed_decoder_flops = decoder_qk_logits_flops_fwd + decoder_v_logits_flops_fwd
|
| 1119 |
+
hardware_flops = model_flops + recomputed_decoder_flops
|
| 1120 |
+
else:
|
| 1121 |
+
raise ValueError("recompute_granularity must be one of 'full' or 'selective'")
|
| 1122 |
+
|
| 1123 |
+
return model_flops, hardware_flops
|
run_train.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Nanotron training script.
|
| 3 |
+
|
| 4 |
+
Usage:
|
| 5 |
+
```
|
| 6 |
+
export CUDA_DEVICE_MAX_CONNECTIONS=1 # important for some distributed operations
|
| 7 |
+
torchrun --nproc_per_node=8 run_train.py --config-file config_tiny_mistral.yaml
|
| 8 |
+
```
|
| 9 |
+
"""
|
| 10 |
+
import argparse
|
| 11 |
+
|
| 12 |
+
from modeling_mistral import MistralForTraining
|
| 13 |
+
from dataloader import get_dataloader
|
| 14 |
+
from nanotron.trainer import DistributedTrainer
|
| 15 |
+
from config_tiny_mistral import MistralConfig
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_args():
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument("--config-file", type=str, required=True, help="Path to the YAML or python config file")
|
| 22 |
+
return parser.parse_args()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
args = get_args()
|
| 27 |
+
config_file = args.config_file
|
| 28 |
+
|
| 29 |
+
# Load trainer and data
|
| 30 |
+
trainer = DistributedTrainer(config_file, model_class=MistralForTraining, model_config_class=MistralConfig)
|
| 31 |
+
dataloader = get_dataloader(trainer)
|
| 32 |
+
|
| 33 |
+
# Train
|
| 34 |
+
trainer.train(dataloader)
|