Update README.md
Browse files
README.md
CHANGED
@@ -31,7 +31,7 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
31 |
|
32 |
```python
|
33 |
>>> from transformers import pipeline
|
34 |
-
>>> unmasker = pipeline('fill-mask', model='
|
35 |
>>> unmasker("rais wa [MASK] ya tanzania.")
|
36 |
|
37 |
|
@@ -41,8 +41,8 @@ Here is how to use this model to get the features of a given text in PyTorch:
|
|
41 |
|
42 |
```python
|
43 |
from transformers import BertTokenizer, BertModel
|
44 |
-
tokenizer = BertTokenizer.from_pretrained('
|
45 |
-
model = BertModel.from_pretrained("
|
46 |
text = "Replace me by any text you'd like."
|
47 |
encoded_input = tokenizer(text, return_tensors='pt')
|
48 |
output = model(**encoded_input)
|
@@ -52,8 +52,8 @@ and in TensorFlow:
|
|
52 |
|
53 |
```python
|
54 |
from transformers import BertTokenizer, TFBertModel
|
55 |
-
tokenizer = BertTokenizer.from_pretrained('
|
56 |
-
model = TFBertModel.from_pretrained("
|
57 |
text = "Replace me by any text you'd like."
|
58 |
encoded_input = tokenizer(text, return_tensors='tf')
|
59 |
output = model(encoded_input)
|
|
|
31 |
|
32 |
```python
|
33 |
>>> from transformers import pipeline
|
34 |
+
>>> unmasker = pipeline('fill-mask', model='nairaxo/toumbert')
|
35 |
>>> unmasker("rais wa [MASK] ya tanzania.")
|
36 |
|
37 |
|
|
|
41 |
|
42 |
```python
|
43 |
from transformers import BertTokenizer, BertModel
|
44 |
+
tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert')
|
45 |
+
model = BertModel.from_pretrained("nairaxo/toumbert")
|
46 |
text = "Replace me by any text you'd like."
|
47 |
encoded_input = tokenizer(text, return_tensors='pt')
|
48 |
output = model(**encoded_input)
|
|
|
52 |
|
53 |
```python
|
54 |
from transformers import BertTokenizer, TFBertModel
|
55 |
+
tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert')
|
56 |
+
model = TFBertModel.from_pretrained("nairaxo/toumbert")
|
57 |
text = "Replace me by any text you'd like."
|
58 |
encoded_input = tokenizer(text, return_tensors='tf')
|
59 |
output = model(encoded_input)
|