Uploaded model
- Developed by: nagayaoh
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Introduction
This is a result of LLM2024 competition on UTokyo seminor.
- Dashboard score is 3.05
Including
- Fine-tuned Model
- README (this file)
Dataset
This model used the following dataset for fine tuning only.
| Language | Dataset | License | Description |
|---|---|---|---|
| Japanese | ichikara-instruction-003-001-1.json | CC-BY-NC-SA | ichikara-instruction: LLMのための日本語インストラクションデータ |
How to build this model
You can use Google colab in T4 runtime:
- It takes about 18 - 40 minutes
- If possible, strongly recommend you followings:
- Use
{model|data}.to('cuda')to shorten your learning duration - Use A100
- Use
- I used following code (removed):
- Evalution on Learning to avoid over-learning
- WandB to check parameter tuning
Code
This is ipynb code
# -*- coding: utf-8 -*-
# !!! paste below code as ipynb in Google Colab
# ===============================================================================================
# --- Install Python Packages
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" -qU
!pip install --upgrade torch torchvision torchaudio -qU
!pip install --upgrade xformers -qU
# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" -qU
# ===============================================================================================
# --- Parameter definition
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Put data files according to path definition
proj_path = "/content"
input_path = proj_path + "/input/ichikara-instruction-003-001-1.json"
eval_path = proj_path + "/eval/elyza-tasks-100-TV_0.jsonl"
result_path = proj_path + "/results"
# ===============================================================================================
# Setting Parameters
model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-it" # Adaptor name
dtype = None # None is OK +
load_in_4bit = True # True for 13B model
max_seq_length = 512 # Any length can be used because of RoPE
# パラメータをPack
config={
"model_id": model_id,
"learning_rate": 2e-5,
"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"num_train_epochs":3,
"warmup_steps": 10,
"max_steps": -1,
"lora_r": 32,
"lora_alpha": 32,
"lora_dropout": 0.05,
"lora_bias": "none",
"lora_use_rslora": False,
"lora_loftq_config": None,
"model_max_seq_length": max_seq_length,
"model_dtype": dtype,
"model_load_in_4bit": load_in_4bit,
"seed": 3407,
"max_seq_length": max_seq_length
}
# ===============================================================================================
# Load llm-jp/llm-jp-3-13b as 4bit-quantized qLoRA
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = config.model_id,
dtype = config.model_dtype,
load_in_4bit = config.model_load_in_4bit,
trust_remote_code= True,
)
model = FastLanguageModel.get_peft_model(
model,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
r = config.lora_r,
lora_alpha = config.lora_alpha,
lora_dropout = config.lora_dropout,
bias = config.lora_bias,
use_rslora = config.lora_use_rslora,
loftq_config = config.lora_loftq_config,
max_seq_length = config.max_seq_length,
use_gradient_checkpointing = "unsloth",
random_state = config.seed,
)
# ===============================================================================================
# Load dataset and spilit into train and test
from datasets import load_dataset
train_dataset = load_dataset("json", data_files= input_path, split="train[:80%]" )
test_dataset = load_dataset("json", data_files= input_path, split="train[80%:]")
# Formatting in prompt style
EOS_TOKEN = tokenizer.eos_token
prompt = f"""### 指示\n{input}\n### 回答\n"""
def formatting_prompts_func(examples):
input = examples["text"]
output = examples["output"]
text = prompt.format(input, output) + EOS_TOKEN
return { "formatted_text" : text, } # Retrun new field "formatted_text"
# Assign Prompt style
train_dataset = train_dataset.map( formatting_prompts_func, num_proc= 4 )
test_dataset = test_dataset.map( formatting_prompts_func, num_proc= 4 )
# ===============================================================================================
from trl import SFTTrainer
from transformers import TrainingArguments, EarlyStoppingCallback
from unsloth import is_bfloat16_supported
# EarlyStoppingCallback
early_stopping_callback = EarlyStoppingCallback(
early_stopping_patience = 3,
early_stopping_threshold = 0.0
)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = train_dataset,
eval_dataset = test_dataset,
max_seq_length = config.max_seq_length,
dataset_text_field = "formatted_text",
packing = False,
callbacks=[early_stopping_callback],
args = TrainingArguments(
per_device_train_batch_size = config.per_device_train_batch_size,
gradient_accumulation_steps = config.gradient_accumulation_steps,
num_train_epochs = config.num_train_epochs,
warmup_steps = config.warmup_steps,
max_steps = config.max_steps,
learning_rate = config.learning_rate,
seed = config.seed,
evaluation_strategy = "steps",
eval_steps = 20,
save_strategy = "steps",
save_steps = 60,
save_total_limit = 3,
load_best_model_at_end = True,
metric_for_best_model = "eval_loss",
greater_is_better = False,
output_dir = "outputs",
report_to = "wandb",
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
group_by_length = True,
logging_steps = 10,
),
)
# ===============================================================================================
# Trainning
trainer_stats = trainer.train()
# ===============================================================================================
# Load Elyza-100 tasks
import json
eval_datasets = []
elyza_tasks_path = eval_path
with open(elyza_tasks_path, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
eval_datasets.append(json.loads(item))
item = ""
# Do tasks
from tqdm import tqdm
FastLanguageModel.for_inference(model)
model.eval()
results = []
for dt in tqdm(eval_datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt")
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# ===============================================================================================
# Save result as jsonl
jsonl_result_path = result_path + f"/{new_model_id}_output.jsonl",
with open( jsonl_result_path, 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
# Send LoRA adaptors into HugginFace modelcard page
HF_TOKEN = "Please replace here by hugging face Access token"
model.push_to_hub_merged(
new_model_id+"_lora",
tokenizer=tokenizer,
save_method="lora",
token=HF_TOKEN,
private=False
)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nagayaoh/LLM_2024_final_round_model
Base model
llm-jp/llm-jp-3-13b