--- library_name: transformers license: apache-2.0 base_model: arbml/whisper-small-ar tags: - generated_from_trainer metrics: - accuracy model-index: - name: whisper-small-ar-eos-v6-mulaw results: [] --- # whisper-small-ar-eos-v6-mulaw This model is a fine-tuned version of [arbml/whisper-small-ar](https://huggingface.co/arbml/whisper-small-ar) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Accuracy: 0.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8494 | 1.0 | 557 | 0.8372 | 0.5987 | | 0.7418 | 2.0 | 1114 | 0.7249 | 0.7012 | | 0.7201 | 3.0 | 1671 | 0.7034 | 0.7144 | | 0.7032 | 4.0 | 2228 | 0.6996 | 0.7123 | | 0.7016 | 5.0 | 2785 | 0.6956 | 0.7169 | | 0.64 | 6.0 | 3342 | 0.7002 | 0.7184 | | 0.6507 | 7.0 | 3899 | 0.6937 | 0.7245 | | 0.6972 | 8.0 | 4456 | 0.6966 | 0.7235 | | 0.6435 | 9.0 | 5013 | 0.6954 | 0.7260 | | 0.6437 | 10.0 | 5570 | 0.6969 | 0.7194 | | 0.675 | 11.0 | 6127 | 0.7022 | 0.7225 | | 0.6486 | 12.0 | 6684 | 0.7024 | 0.7220 | | 0.5699 | 13.0 | 7241 | 0.7103 | 0.7199 | | 0.6024 | 14.0 | 7798 | 0.7070 | 0.7220 | | 0.6019 | 15.0 | 8355 | 0.7145 | 0.7220 | | 0.6209 | 16.0 | 8912 | 0.7201 | 0.7230 | | 0.5811 | 17.0 | 9469 | 0.7241 | 0.7210 | | 0.5941 | 18.0 | 10026 | 0.7281 | 0.7199 | | 0.5847 | 19.0 | 10583 | 0.7371 | 0.7210 | | 0.5309 | 20.0 | 11140 | 0.7435 | 0.7098 | | 0.5697 | 21.0 | 11697 | 0.7490 | 0.7128 | | 0.5536 | 22.0 | 12254 | 0.7534 | 0.7103 | | 0.5517 | 23.0 | 12811 | 0.7636 | 0.7118 | | 0.5907 | 24.0 | 13368 | 0.7624 | 0.7123 | | 0.5081 | 25.0 | 13925 | 0.7674 | 0.7103 | | 0.5305 | 26.0 | 14482 | 0.7706 | 0.7103 | | 0.4848 | 27.0 | 15039 | 0.7740 | 0.7083 | | 0.4801 | 28.0 | 15596 | 0.7761 | 0.7093 | | 0.5059 | 29.0 | 16153 | 0.7776 | 0.7042 | | 0.51 | 30.0 | 16710 | 0.7786 | 0.7073 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0