Upload PPO BipedalWalker-v3 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +105 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 152.15 +/- 116.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dcedcab1cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcedcab1d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcedcab1e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcedcab1ea0>", "_build": "<function ActorCriticPolicy._build at 0x7dcedcab1f30>", "forward": "<function ActorCriticPolicy.forward at 0x7dcedcab1fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcedcab2050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcedcab20e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7dcedcab2170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcedcab2200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcedcab2290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcedcab2320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dcedca5f3c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698771445938695610, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAID+/D4cLVG9TQ07PtHgOzwUBZI//P9/PzpPHT8wanO/AAAAAKFr376ofWQ91Mn1vi3EFD4AAAAA43uUPqV3kT50vZE+CqSWPl/1nz4SDLQ+M2LQPrd2/z75/is/AACAPz2gCT5oo0U9zX87PiVnfzx2DpE/AAAAs6CudL4AAIC/AAAAAIxsmb4BAIA/TN+2vgAAgL8AAAAAGZG2PjcQuj4m9cA+mIbMPpkj3z5fivw+n+ESP5UgNj/tZ30/AACAP3M7vz60AT4927aCPkUBk70lWI4/AAAAs4h0hj38/38/AAAAACjmv76JKEm/aAARv2g3Pz4AAIA/U8SdPg9NoD62T6U+mA2uPoKauz5uM9A+yxz0PgX1Ez9GTjo/AACAP8zDVL3Bhji9o39QPrEpMT6nf5E/gFccu4xcbz+rtkI6AACAP255Tb8zt42+nmQhP+8RgD8AAAAA41GcPlDZnT7BuqI+OnGsPswYuz78RtA+5C31Prs1GT8tQF4/AACAP6Qp3j1mhFS98iVqPtrCND0gu5I//v9/P0AlZT/NiHq/AACAPxmrNL+At4C+QKk/PocZJj8AAAAA3cWRPjXNkD58z5I+BbCXPgZhoD4RILQ+H5fOPu1R9T6tRBw/R8xtP0POIT5faEI9xaEJPpFEgD0UlI8/AAAAANDw3D0rHUK/AAAAANJgvL79/38/FNLXvgEAgL8AAAAA4GCxPsfGsT44u7Y+uzPDPsBZ1D5C7e0+uKoMPxH8MT8FyXk/AACAP6ofWj44WVo9xvxUPjCUn72pRJE/AAAAABZTxz77/3+/AAAAAL8uI74eorY+IJu1vqXIz74AAAAAhYG5PmC5uz74y8E+kjPNPkIt3j79SPk+TiMRP2F3MT8AAIA/AACAP55ZZ738Ka49yAmTPu+Jnr1zio4/AAAAAIpfGz9nQSm/AAAAAB/5QD78/3+/wD+fvgEAgD8AAAAAlerDPqzAxj4cY84+Ia3dPgP39j740ww/GUgmPyIjTz8AAIA/AACAP6umyz4q2N+9BUTXPi9c97wZLo4/AADNN0TdQz/Y/3+/AAAAAFaRVL8AAGC1wO3ZvcvO/D4AAIA/2KWTPok5lj4IGJw+RYOkPlEqsj7cFcc+6UHmPvF4Dj9PuUU/AACAP6iBuz7Mqci7am6vPki3uLwnSIY/PI9MvGBrxj79/38/AAAAANsuRb8KDSG/uFs8vrtdCD8AAAAAISuWPn+GmD7dqaA+WiSsPnnBuz7219Q+RNH9PsfcID8CtV8/AACAP+Mx8rzhrUE9un8yPne6iT1+gZA/AKQqukQQpT4xBoC/AACAPxK9m77yBIA/+Hq/PVX3f78AAAAA7TXEPgVgxD7BB8g+WObQPle74j5gefs+ttwPPxXNMD/bSHQ/AACAP6Wbrr1u1JM9eto+PrMq6T0eJpE/QGuhu0q7MD/QOIC/AACAP0E+yb6JIoA/oKXdPct89L8AAIA/q42nPl3pqD6y868+reK8PhZ40j4n1PM+BmETPwLzPD+VRH0/AACAP/uN2bv0Xzy97J9UPtshdD2AvZA/atQiPwBWbz812yu+AAAAAIC8Vb8AAAAAMxYmP2Ua6j4AAIA/KKSWPq7PmD7qXp4+VQaoPoGUuT5jdtM+DMz4Phx8Gj/pVFI/AACAPzoFwj4ylE29kvvIPlb0ar3kMn8/pPy0vapoUT8BAIA/AAAAAD3XOL8dhLS+cKaqvV2L1z4AAIA/PL+QPo1Ajz406pA+8/yVPpUjoD5VxbA+O2PNPpaoAD+r1zA/AACAP8NIFz7FKqU9PU3sPYVG6jv1VI4/AOCIuGgtpz63AIC/AACAPzQZj77oJ+I+qDpWvrHBnr8AAIA/HnmoPupiqj5ysK4+9D62Plw1xj5sKuA+ocQGP+8WMT8AAIA/AACAP+C/zT44UNe9pDyfPtQwh71xC3k/KAHnvjDvMz8AAIA/AAAAAEvVP7/6/38/yKJLvuqLCL8AAIA/YwmUPjtNkz4K4ZU+aN2ePtxLrD6GGL0+Ul7YPk7gAT/zgCg/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7RYekpI+aMAWyUTUAGjAF0lEdAhTnVsk6cRXV9lChoBkdAYPE3DvVmSWgHTUAGaAhHQIU/lyimEXd1fZQoaAZHQGCuxrSE12toB01ABmgIR0CFSEURFqi5dX2UKGgGR0Bb36WcBltkaAdNQAZoCEdAhUss8YAKfHV9lChoBkdAX2jh5xBE8mgHTUAGaAhHQIWDt6eGwid1fZQoaAZHwEz3X9R77bdoB03tAmgIR0CFhOsIVuaXdX2UKGgGR0Bh+euA7PpqaAdNQAZoCEdAhYYf3FkxynV9lChoBkfAT4lWMju8b2gHTVoCaAhHQIWKAcWCVbB1fZQoaAZHwEFfQfp2U0NoB03kA2gIR0CFjaJeE7GOdX2UKGgGR0BhLBaLXL/0aAdNQAZoCEdAhY8KpT/ACXV9lChoBkdAYbMAWi1zAGgHTUAGaAhHQIWQXqX4TK11fZQoaAZHQGCL3y7PIGRoB01ABmgIR0CFlP8E3bVSdX2UKGgGR8BVqRRl6JIlaAdL/WgIR0CFlrODaoMsdX2UKGgGR8BdqblJYkmhaAdLRmgIR0CFmI0uUUwjdX2UKGgGR8BUs1LWZqmCaAdNpQFoCEdAhZjP4dp7C3V9lChoBkdAYw6CmMwUQGgHTUAGaAhHQIWaGtSydFx1fZQoaAZHwFp4ddmg8KZoB0tiaAhHQIWdwxDb8FZ1fZQoaAZHQGEvWtU4rBloB01ABmgIR0CFnnD4xk/bdX2UKGgGR0Bg4ymTC+DfaAdNQAZoCEdAhZ8oTGo73nV9lChoBkdAYI1o+OfdymgHTUAGaAhHQIWlDoMa0hN1fZQoaAZHQDy6RSxZ+x5oB02EBWgIR0CFrLwrDqGDdX2UKGgGR8BUUW43FUADaAdNKwFoCEdAha265PM0QHV9lChoBkdAYUxC1qnFYWgHTUAGaAhHQIXYU65oXbd1fZQoaAZHQGMTyOq//NtoB01ABmgIR0CF8K2H+IdmdX2UKGgGR7/zWfK6nR9gaAdNdwRoCEdAhfWmhVU+93V9lChoBkdAYK8dxQzk62gHTUAGaAhHQIX14wIt16p1fZQoaAZHQF9lcu8K5TZoB01ABmgIR0CGBTR8+iaidX2UKGgGR0BjYcglnh86aAdNQAZoCEdAhgZ/2kBS1nV9lChoBkfAVXuZ+hGpdmgHTbkBaAhHQIYLOBvrGBF1fZQoaAZHQF3XYjjaPCFoB01ABmgIR0CGDbzreIl/dX2UKGgGR0Be9/SQYDT0aAdNQAZoCEdAhhBaakRBeHV9lChoBkdAYOLzzVc2SGgHTUAGaAhHQIYWyvHLidd1fZQoaAZHQGCkk1Muez5oB01ABmgIR0CGOUzVMEiddX2UKGgGR0Bf24hIOH32aAdNQAZoCEdAhjrAvDgqE3V9lChoBkdAYfpiNsFdLWgHTUAGaAhHQIY+SJsO5J91fZQoaAZHQGMm+D3/PxBoB01ABmgIR0CGPvke6qbSdX2UKGgGR0BB/4ku6ErYaAdNyAVoCEdAhj+srd30PHV9lChoBkdAX0LasZHd42gHTUAGaAhHQIZNTK7qY7d1fZQoaAZHQGAFVsk6cRVoB01ABmgIR0CGTu4sEq2CdX2UKGgGR8BQNpqVQhwEaAdNhgFoCEdAhlUFx4ptrXV9lChoBkdAY0r2zv7WNGgHTUAGaAhHQIZbP9DQZ4x1fZQoaAZHQBsFYEGJN0xoB03hBGgIR0CGXFSPU8V6dX2UKGgGR8BQI1urIYFaaAdNGgJoCEdAhl+vt+kP+XV9lChoBkfAXbEWcjJMg2gHS0VoCEdAhmDOxSpBHHV9lChoBkfAWWUiW3Sa3WgHS4JoCEdAhmpol2NedHV9lChoBkfAIS8fvF3pwGgHTY4EaAhHQIZ4kV8CxNZ1fZQoaAZHQGFAcCPp6hRoB01ABmgIR0CGeN9MK1G9dX2UKGgGR0Bhv4aYNRWMaAdNQAZoCEdAhqdWIoE0SHV9lChoBkdAYYwSnLq2SmgHTUAGaAhHQIaotH4Glhx1fZQoaAZHQGL1UqpcX3xoB01ABmgIR0CGrY8UVSGbdX2UKGgGR8Ar986V+qioaAdN+QNoCEdAhrIo+GGmDXV9lChoBkdAYvWKE384xWgHTUAGaAhHQIayrQmeDnN1fZQoaAZHQFwfZTAFgUloB01ABmgIR0CGuPAGjbi7dX2UKGgGR0BfCvvnbItEaAdNQAZoCEdAhrrFnh86WHV9lChoBkdAYTqf+0gKW2gHTUAGaAhHQIa8RmmLtNV1fZQoaAZHQGAtFvqC6H1oB01ABmgIR0CGwSt5le4TdX2UKGgGR0BiKzNOdoWYaAdNQAZoCEdAhv3FXaJyhnV9lChoBkfAPflpPAO8TWgHTTYDaAhHQIb/I5HVf/p1fZQoaAZHQGMXWcz67/ZoB01ABmgIR0CHAZOeJ53UdX2UKGgGR0BfsUa/ATIvaAdNQAZoCEdAhwYuWjXWfHV9lChoBkdAYMTVQQ+UyGgHTUAGaAhHQIcIypWFN+N1fZQoaAZHQGEOxusLfDVoB01ABmgIR0CHDsA1ejVQdX2UKGgGR0BAdal+EytWaAdNuAVoCEdAhxD+vpyIYXV9lChoBkdAYthy4FzMimgHTUAGaAhHQIcXqHsTnJV1fZQoaAZHQGBdF2mpEQZoB01ABmgIR0CHJFoFFDv3dX2UKGgGR0BgWkJpnHvMaAdNQAZoCEdAhypihnJ1aHV9lChoBkdAYVvh+fAbhmgHTUAGaAhHQIcvO2gFotd1fZQoaAZHQFrRx8D0UXZoB01ABmgIR0CHL7Yr8R+SdX2UKGgGR8BBIFUIcBEKaAdNLgRoCEdAh13PMjeKsXV9lChoBkdAYPwXkYGdJGgHTUAGaAhHQIdhE89wFTx1fZQoaAZHQFzPQO4G2ThoB01ABmgIR0CHY/lxwQ18dX2UKGgGR0Bcu9W+49X+aAdNQAZoCEdAh2aG0E5hjXV9lChoBkdAWBvJyQxN7GgHTUAGaAhHQIdtQnYxtYV1fZQoaAZHQFyT6ZYxL01oB01ABmgIR0CHe0MnZ00WdX2UKGgGR8BBu0RnOB1+aAdNfQNoCEdAh37QK8cuJ3V9lChoBkdAYWwbsF+uvGgHTUAGaAhHQId/E0pEx7B1fZQoaAZHQGDE71yvLYBoB01ABmgIR0CHg4GZ/kNndX2UKGgGR0BgtVCzC1qnaAdNQAZoCEdAh4ZYChew93V9lChoBkfAR2f7pFCswWgHTfgCaAhHQIeJxYzSCvp1fZQoaAZHQF2rsa86FM9oB01ABmgIR0CHjDCeEqUedX2UKGgGR8A+UyLyc0+DaAdNtgNoCEdAh4z/vfCQ93V9lChoBkdAYVBOMVDa5GgHTUAGaAhHQIeOfm7rcCZ1fZQoaAZHQGNffBWPtD5oB01ABmgIR0CHtavpyIYWdX2UKGgGR0BhuiqlxffGaAdNQAZoCEdAh9Bl4cFQmHV9lChoBkdAYiQIOYplSWgHTUAGaAhHQIfYVOXVsk91fZQoaAZHQGJAyCvovBdoB01ABmgIR0CH4Hw6QvHtdX2UKGgGR8BGbHb7CSA6aAdNZwJoCEdAh+NxODaoM3V9lChoBkdAYhGXsw+MZWgHTUAGaAhHQIfmuaz/p+t1fZQoaAZHQGIM24d6syVoB01ABmgIR0CH6FD4xk/bdX2UKGgGR0BguQLLIPsiaAdNQAZoCEdAh+2Ar6LwWnV9lChoBkfAU4lotcv/R2gHTR0CaAhHQIf0boGIKtx1fZQoaAZHQGJgm4I8hcJoB01ABmgIR0CIHSyLQ5WBdX2UKGgGR0Bd+U163RXwaAdNQAZoCEdAiCC2912aD3V9lChoBkdAWzmdEsrd32gHTUAGaAhHQIgg/Mnqmj11fZQoaAZHQGDmD+irT6VoB01ABmgIR0CIJY9U0elsdX2UKGgGR0BjP9mSQo1DaAdNQAZoCEdAiCgsAmzBynV9lChoBkdAZB6iZfD1oWgHTUAGaAhHQIgrlu1ndwh1fZQoaAZHQFwXOjZcs19oB01ABmgIR0CILf67/XGwdX2UKGgGR0BiXcTURWcSaAdNQAZoCEdAiC66fSQYDXV9lChoBkdAYubiEQGwA2gHTUAGaAhHQIgwL987ZFp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f512d24b6bcc29212d9baa5348418565ba6b753ff09e845dc4ce01cf4f765ec5
|
3 |
+
size 176935
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dcedcab1cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcedcab1d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcedcab1e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcedcab1ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dcedcab1f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dcedcab1fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcedcab2050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcedcab20e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dcedcab2170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcedcab2200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcedcab2290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcedcab2320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dcedca5f3c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698771445938695610,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAID+/D4cLVG9TQ07PtHgOzwUBZI//P9/PzpPHT8wanO/AAAAAKFr376ofWQ91Mn1vi3EFD4AAAAA43uUPqV3kT50vZE+CqSWPl/1nz4SDLQ+M2LQPrd2/z75/is/AACAPz2gCT5oo0U9zX87PiVnfzx2DpE/AAAAs6CudL4AAIC/AAAAAIxsmb4BAIA/TN+2vgAAgL8AAAAAGZG2PjcQuj4m9cA+mIbMPpkj3z5fivw+n+ESP5UgNj/tZ30/AACAP3M7vz60AT4927aCPkUBk70lWI4/AAAAs4h0hj38/38/AAAAACjmv76JKEm/aAARv2g3Pz4AAIA/U8SdPg9NoD62T6U+mA2uPoKauz5uM9A+yxz0PgX1Ez9GTjo/AACAP8zDVL3Bhji9o39QPrEpMT6nf5E/gFccu4xcbz+rtkI6AACAP255Tb8zt42+nmQhP+8RgD8AAAAA41GcPlDZnT7BuqI+OnGsPswYuz78RtA+5C31Prs1GT8tQF4/AACAP6Qp3j1mhFS98iVqPtrCND0gu5I//v9/P0AlZT/NiHq/AACAPxmrNL+At4C+QKk/PocZJj8AAAAA3cWRPjXNkD58z5I+BbCXPgZhoD4RILQ+H5fOPu1R9T6tRBw/R8xtP0POIT5faEI9xaEJPpFEgD0UlI8/AAAAANDw3D0rHUK/AAAAANJgvL79/38/FNLXvgEAgL8AAAAA4GCxPsfGsT44u7Y+uzPDPsBZ1D5C7e0+uKoMPxH8MT8FyXk/AACAP6ofWj44WVo9xvxUPjCUn72pRJE/AAAAABZTxz77/3+/AAAAAL8uI74eorY+IJu1vqXIz74AAAAAhYG5PmC5uz74y8E+kjPNPkIt3j79SPk+TiMRP2F3MT8AAIA/AACAP55ZZ738Ka49yAmTPu+Jnr1zio4/AAAAAIpfGz9nQSm/AAAAAB/5QD78/3+/wD+fvgEAgD8AAAAAlerDPqzAxj4cY84+Ia3dPgP39j740ww/GUgmPyIjTz8AAIA/AACAP6umyz4q2N+9BUTXPi9c97wZLo4/AADNN0TdQz/Y/3+/AAAAAFaRVL8AAGC1wO3ZvcvO/D4AAIA/2KWTPok5lj4IGJw+RYOkPlEqsj7cFcc+6UHmPvF4Dj9PuUU/AACAP6iBuz7Mqci7am6vPki3uLwnSIY/PI9MvGBrxj79/38/AAAAANsuRb8KDSG/uFs8vrtdCD8AAAAAISuWPn+GmD7dqaA+WiSsPnnBuz7219Q+RNH9PsfcID8CtV8/AACAP+Mx8rzhrUE9un8yPne6iT1+gZA/AKQqukQQpT4xBoC/AACAPxK9m77yBIA/+Hq/PVX3f78AAAAA7TXEPgVgxD7BB8g+WObQPle74j5gefs+ttwPPxXNMD/bSHQ/AACAP6Wbrr1u1JM9eto+PrMq6T0eJpE/QGuhu0q7MD/QOIC/AACAP0E+yb6JIoA/oKXdPct89L8AAIA/q42nPl3pqD6y868+reK8PhZ40j4n1PM+BmETPwLzPD+VRH0/AACAP/uN2bv0Xzy97J9UPtshdD2AvZA/atQiPwBWbz812yu+AAAAAIC8Vb8AAAAAMxYmP2Ua6j4AAIA/KKSWPq7PmD7qXp4+VQaoPoGUuT5jdtM+DMz4Phx8Gj/pVFI/AACAPzoFwj4ylE29kvvIPlb0ar3kMn8/pPy0vapoUT8BAIA/AAAAAD3XOL8dhLS+cKaqvV2L1z4AAIA/PL+QPo1Ajz406pA+8/yVPpUjoD5VxbA+O2PNPpaoAD+r1zA/AACAP8NIFz7FKqU9PU3sPYVG6jv1VI4/AOCIuGgtpz63AIC/AACAPzQZj77oJ+I+qDpWvrHBnr8AAIA/HnmoPupiqj5ysK4+9D62Plw1xj5sKuA+ocQGP+8WMT8AAIA/AACAP+C/zT44UNe9pDyfPtQwh71xC3k/KAHnvjDvMz8AAIA/AAAAAEvVP7/6/38/yKJLvuqLCL8AAIA/YwmUPjtNkz4K4ZU+aN2ePtxLrD6GGL0+Ul7YPk7gAT/zgCg/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7RYekpI+aMAWyUTUAGjAF0lEdAhTnVsk6cRXV9lChoBkdAYPE3DvVmSWgHTUAGaAhHQIU/lyimEXd1fZQoaAZHQGCuxrSE12toB01ABmgIR0CFSEURFqi5dX2UKGgGR0Bb36WcBltkaAdNQAZoCEdAhUss8YAKfHV9lChoBkdAX2jh5xBE8mgHTUAGaAhHQIWDt6eGwid1fZQoaAZHwEz3X9R77bdoB03tAmgIR0CFhOsIVuaXdX2UKGgGR0Bh+euA7PpqaAdNQAZoCEdAhYYf3FkxynV9lChoBkfAT4lWMju8b2gHTVoCaAhHQIWKAcWCVbB1fZQoaAZHwEFfQfp2U0NoB03kA2gIR0CFjaJeE7GOdX2UKGgGR0BhLBaLXL/0aAdNQAZoCEdAhY8KpT/ACXV9lChoBkdAYbMAWi1zAGgHTUAGaAhHQIWQXqX4TK11fZQoaAZHQGCL3y7PIGRoB01ABmgIR0CFlP8E3bVSdX2UKGgGR8BVqRRl6JIlaAdL/WgIR0CFlrODaoMsdX2UKGgGR8BdqblJYkmhaAdLRmgIR0CFmI0uUUwjdX2UKGgGR8BUs1LWZqmCaAdNpQFoCEdAhZjP4dp7C3V9lChoBkdAYw6CmMwUQGgHTUAGaAhHQIWaGtSydFx1fZQoaAZHwFp4ddmg8KZoB0tiaAhHQIWdwxDb8FZ1fZQoaAZHQGEvWtU4rBloB01ABmgIR0CFnnD4xk/bdX2UKGgGR0Bg4ymTC+DfaAdNQAZoCEdAhZ8oTGo73nV9lChoBkdAYI1o+OfdymgHTUAGaAhHQIWlDoMa0hN1fZQoaAZHQDy6RSxZ+x5oB02EBWgIR0CFrLwrDqGDdX2UKGgGR8BUUW43FUADaAdNKwFoCEdAha265PM0QHV9lChoBkdAYUxC1qnFYWgHTUAGaAhHQIXYU65oXbd1fZQoaAZHQGMTyOq//NtoB01ABmgIR0CF8K2H+IdmdX2UKGgGR7/zWfK6nR9gaAdNdwRoCEdAhfWmhVU+93V9lChoBkdAYK8dxQzk62gHTUAGaAhHQIX14wIt16p1fZQoaAZHQF9lcu8K5TZoB01ABmgIR0CGBTR8+iaidX2UKGgGR0BjYcglnh86aAdNQAZoCEdAhgZ/2kBS1nV9lChoBkfAVXuZ+hGpdmgHTbkBaAhHQIYLOBvrGBF1fZQoaAZHQF3XYjjaPCFoB01ABmgIR0CGDbzreIl/dX2UKGgGR0Be9/SQYDT0aAdNQAZoCEdAhhBaakRBeHV9lChoBkdAYOLzzVc2SGgHTUAGaAhHQIYWyvHLidd1fZQoaAZHQGCkk1Muez5oB01ABmgIR0CGOUzVMEiddX2UKGgGR0Bf24hIOH32aAdNQAZoCEdAhjrAvDgqE3V9lChoBkdAYfpiNsFdLWgHTUAGaAhHQIY+SJsO5J91fZQoaAZHQGMm+D3/PxBoB01ABmgIR0CGPvke6qbSdX2UKGgGR0BB/4ku6ErYaAdNyAVoCEdAhj+srd30PHV9lChoBkdAX0LasZHd42gHTUAGaAhHQIZNTK7qY7d1fZQoaAZHQGAFVsk6cRVoB01ABmgIR0CGTu4sEq2CdX2UKGgGR8BQNpqVQhwEaAdNhgFoCEdAhlUFx4ptrXV9lChoBkdAY0r2zv7WNGgHTUAGaAhHQIZbP9DQZ4x1fZQoaAZHQBsFYEGJN0xoB03hBGgIR0CGXFSPU8V6dX2UKGgGR8BQI1urIYFaaAdNGgJoCEdAhl+vt+kP+XV9lChoBkfAXbEWcjJMg2gHS0VoCEdAhmDOxSpBHHV9lChoBkfAWWUiW3Sa3WgHS4JoCEdAhmpol2NedHV9lChoBkfAIS8fvF3pwGgHTY4EaAhHQIZ4kV8CxNZ1fZQoaAZHQGFAcCPp6hRoB01ABmgIR0CGeN9MK1G9dX2UKGgGR0Bhv4aYNRWMaAdNQAZoCEdAhqdWIoE0SHV9lChoBkdAYYwSnLq2SmgHTUAGaAhHQIaotH4Glhx1fZQoaAZHQGL1UqpcX3xoB01ABmgIR0CGrY8UVSGbdX2UKGgGR8Ar986V+qioaAdN+QNoCEdAhrIo+GGmDXV9lChoBkdAYvWKE384xWgHTUAGaAhHQIayrQmeDnN1fZQoaAZHQFwfZTAFgUloB01ABmgIR0CGuPAGjbi7dX2UKGgGR0BfCvvnbItEaAdNQAZoCEdAhrrFnh86WHV9lChoBkdAYTqf+0gKW2gHTUAGaAhHQIa8RmmLtNV1fZQoaAZHQGAtFvqC6H1oB01ABmgIR0CGwSt5le4TdX2UKGgGR0BiKzNOdoWYaAdNQAZoCEdAhv3FXaJyhnV9lChoBkfAPflpPAO8TWgHTTYDaAhHQIb/I5HVf/p1fZQoaAZHQGMXWcz67/ZoB01ABmgIR0CHAZOeJ53UdX2UKGgGR0BfsUa/ATIvaAdNQAZoCEdAhwYuWjXWfHV9lChoBkdAYMTVQQ+UyGgHTUAGaAhHQIcIypWFN+N1fZQoaAZHQGEOxusLfDVoB01ABmgIR0CHDsA1ejVQdX2UKGgGR0BAdal+EytWaAdNuAVoCEdAhxD+vpyIYXV9lChoBkdAYthy4FzMimgHTUAGaAhHQIcXqHsTnJV1fZQoaAZHQGBdF2mpEQZoB01ABmgIR0CHJFoFFDv3dX2UKGgGR0BgWkJpnHvMaAdNQAZoCEdAhypihnJ1aHV9lChoBkdAYVvh+fAbhmgHTUAGaAhHQIcvO2gFotd1fZQoaAZHQFrRx8D0UXZoB01ABmgIR0CHL7Yr8R+SdX2UKGgGR8BBIFUIcBEKaAdNLgRoCEdAh13PMjeKsXV9lChoBkdAYPwXkYGdJGgHTUAGaAhHQIdhE89wFTx1fZQoaAZHQFzPQO4G2ThoB01ABmgIR0CHY/lxwQ18dX2UKGgGR0Bcu9W+49X+aAdNQAZoCEdAh2aG0E5hjXV9lChoBkdAWBvJyQxN7GgHTUAGaAhHQIdtQnYxtYV1fZQoaAZHQFyT6ZYxL01oB01ABmgIR0CHe0MnZ00WdX2UKGgGR8BBu0RnOB1+aAdNfQNoCEdAh37QK8cuJ3V9lChoBkdAYWwbsF+uvGgHTUAGaAhHQId/E0pEx7B1fZQoaAZHQGDE71yvLYBoB01ABmgIR0CHg4GZ/kNndX2UKGgGR0BgtVCzC1qnaAdNQAZoCEdAh4ZYChew93V9lChoBkfAR2f7pFCswWgHTfgCaAhHQIeJxYzSCvp1fZQoaAZHQF2rsa86FM9oB01ABmgIR0CHjDCeEqUedX2UKGgGR8A+UyLyc0+DaAdNtgNoCEdAh4z/vfCQ93V9lChoBkdAYVBOMVDa5GgHTUAGaAhHQIeOfm7rcCZ1fZQoaAZHQGNffBWPtD5oB01ABmgIR0CHtavpyIYWdX2UKGgGR0BhuiqlxffGaAdNQAZoCEdAh9Bl4cFQmHV9lChoBkdAYiQIOYplSWgHTUAGaAhHQIfYVOXVsk91fZQoaAZHQGJAyCvovBdoB01ABmgIR0CH4Hw6QvHtdX2UKGgGR8BGbHb7CSA6aAdNZwJoCEdAh+NxODaoM3V9lChoBkdAYhGXsw+MZWgHTUAGaAhHQIfmuaz/p+t1fZQoaAZHQGIM24d6syVoB01ABmgIR0CH6FD4xk/bdX2UKGgGR0BguQLLIPsiaAdNQAZoCEdAh+2Ar6LwWnV9lChoBkfAU4lotcv/R2gHTR0CaAhHQIf0boGIKtx1fZQoaAZHQGJgm4I8hcJoB01ABmgIR0CIHSyLQ5WBdX2UKGgGR0Bd+U163RXwaAdNQAZoCEdAiCC2912aD3V9lChoBkdAWzmdEsrd32gHTUAGaAhHQIgg/Mnqmj11fZQoaAZHQGDmD+irT6VoB01ABmgIR0CIJY9U0elsdX2UKGgGR0BjP9mSQo1DaAdNQAZoCEdAiCgsAmzBynV9lChoBkdAZB6iZfD1oWgHTUAGaAhHQIgrlu1ndwh1fZQoaAZHQFwXOjZcs19oB01ABmgIR0CILf67/XGwdX2UKGgGR0BiXcTURWcSaAdNQAZoCEdAiC66fSQYDXV9lChoBkdAYubiEQGwA2gHTUAGaAhHQIgwL987ZFp1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
24
|
63 |
+
],
|
64 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
65 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
66 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
67 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True]",
|
75 |
+
"bounded_above": "[ True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
4
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76c39410b0447ad01dabb3f5b5eea2010bdf066e72cbbad0d5578f9dca08bbed
|
3 |
+
size 105441
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfb15eacf289f25a267d31f9df2b688c8a80f6c75bdaaecbaf7c1eca17caca0b
|
3 |
+
size 52271
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (331 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 152.1481260297328, "std_reward": 116.18977738382885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T17:13:41.714529"}
|