Commit
·
1083abf
1
Parent(s):
c14997b
One more try!
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 274.15 +/- 17.03
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0ecdd65f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0ecdd6680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0ecdd6710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0ecdd67a0>", "_build": "<function ActorCriticPolicy._build at 0x7fb0ecdd6830>", "forward": "<function ActorCriticPolicy.forward at 0x7fb0ecdd68c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0ecdd6950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb0ecdd69e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0ecdd6a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0ecdd6b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0ecdd6b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb0ecdd1f40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652521269.6639104, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxkL2hvbWUvbmFkaXJiZWtvdi9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAMBcHr772fI7Q+YyPjEauLybwbS9RaTfPgAAgD8AAAAAM61rPBBMqj+S+fY9t67jvkUzFTxzOBY8AAAAAAAAAADAEXo+VIlePhrarL6Fb+6+5YtMPfYmeL0AAAAAAAAAAH1ylr6jb7M+DjVQPmMqxb7O2Gu+4L5TPgAAAAAAAAAApvvavWxY1jwWjd8+xFmivrZ9T73NrpU+AAAAAAAAAACziGw9j95Guo24aTMkFzAwoZSPOmoCvbMAAIA/AACAP/qDID6h/FU/8kKoPnYeOb+HvJA+rvr9PQAAAAAAAAAAzfPKPMO5b7qPQ0QycG/rsN/2pDqOCZSyAACAPwAAgD+a1fS7ISqeP9ZCZb30wjq/Fh8ROtobNjwAAAAAAAAAAPqdkz4EnYc+fvfQvmQ8275zO/M8jvI5vgAAAAAAAAAAZubTvHtGw7p9Qd+7ERDvuBkK17l6AVQ4AACAPwAAgD8gn04+/gvRPQKjqr5JFIe+yzj8OyCh5b0AAAAAAAAAADOTRz1cOAG8Ukwavg5ZJj0jt1Q9z7IHvgAAgD8AAIA/Gm0FPlyOKD1V7yO+GakCvpGmtbzuuNa7AAAAAAAAAAAzUNs8KaxSusDiiTxCkgsz4pwUOwO7dDMAAIA/AACAPzNvKz3bVv89vz8AvpqE2r5++N47REW2vQAAAAAAAAAAZmWkvIWxzTwOytY966hivvVARz3k4yY9AAAAAAAAAACzPhk9dp4jPZT3iL2qXpS+G9i1PJozNr0AAAAAAAAAAIB6Nj5pP3y8DxySOmGS0LgN2+29GkC8uQAAgD8AAIA/Grg8voivtz4gKD89Psk0v66wir5O2tU9AAAAAAAAAABGokG+iH6nvPK6MbusWpW5eRsWPjrUZzoAAIA/AACAPzM6zj2kNwA8qh0Svkk2i76TrT89SMPQvAAAAAAAAAAAmgP+PCnIQroGfx++TkTqNw8J37qu5FK3AACAPwAAgD9Nmmu9haO5uRq3p7y+m4Qx/9KKuw3Ed7MAAIA/AACAP/PUSL44FdM+8KmzvJSfK7+KoWG+OCDyPQAAAAAAAAAAGlFKvsFrzLzMyQU7GA+DOfVwMD6KxS+6AACAPwAAgD+zWKa9y5p3P+9xLL4B8U2/1ArVvR3HWr0AAAAAAAAAAFquIz4ceE0+bFYIPCQY0L7M3jg+BvEEPQAAAAAAAAAAzQuLvL6YvT0N5ag91TmjvioSBz37sC89AAAAAAAAAADg0DM+iN6VvCJ6GrsR+3E5Ao8EvurCTjoAAIA/AACAP5pBnzsU2Lm6frojMiuderClqxK6UaZLsgAAgD8AAIA/Mzsbu7SQyD4ylEs9JzIiv9Bi0bwsKkU9AAAAAAAAAADN5bU8ewKPuk3uOrNkMPAuSHAWuOGxxzMAAIA/AACAP3O47b0y978/im/ivpJ8OL5Cjga+HOrDvQAAAAAAAAAA5jY1vc8RE7w2KnY+CSu8vbyeEL23QB0/AACAPwAAgD8TVy2+FJSCPwEoBL9MxTq/JyKJvu9Whr4AAAAAAAAAALqyPr6b/I+8cB28u+n/I7oPXQQ+yFkCOwAAgD8AAIA/c5mHvZJYmz+eqey+vr1Vv8UXhb3sM4m+AAAAAAAAAABzRMO9qL6uPb5hqT2ZOKm+h1SuvPYISjwAAAAAAAAAAGa6MTyMvS8/AuUOPbcPZb8Jmz48CBIXOwAAAAAAAAAAJqpVvrYmfbwY5FS3amN1tV881j1lyYE2AACAPwAAgD8Aazy+iC6yvFBtJDys2YK8GDAiPhu+Er0AAAAAAAAAAGBmRD6EABY/Xl6HPL9bML8NCGU+uD8LvQAAAAAAAAAAzXQbvT16HLl0dyG95AurMYQMq7t+LY8zAACAPwAAgD9mCci8TypKvDIBsTwrFeU8XzF/veYvVb0AAIA/AACAPwAXuL32Bxk7Szl0PA4ugjzq4c66ddQPPAAAAAAAAAAAc7UDvvb3QzuFJnY+ez6CvWb40L2BhJg+AACAPwAAAACapjW9ru3+uoj/2L0prf07YvotPDoL5rwAAIA/AACAPwCenjwww6I/piOJPVS1FL8VFnw9bRwxPQAAAAAAAAAAum0ivpwlBLwdEU48fpmaPFhHWz20B4G9AACAPwAAgD8zYYC8V9tnPDMmu71FT4W+oxu4vIrACrsAAAAAAAAAALNIPb0UlKa67nYCPi3UKrM7/KE68080swAAgD8AAIA/uh+yvom5Yj8+EYi+gacOv0aV474+aOy8AAAAAAAAAADNrCY8wzUvOXIo1DnQl3Y13rYLPO3pALkAAIA/AACAP2Yv2r08grk+nJStvcf3HL/JlLO9WPz4vAAAAAAAAAAAAGaKvLfMLz9sTMc858dtv6hkA7x3bwA+AAAAAAAAAAAqyx+/MK80vvIxu772Jgk9BeZuvksq074AAIA/AACAP949m77YlLw+Xt/qPq+J9b5Aqxa+4keOPgAAAAAAAAAAAC6nvfKvnT8YVPi+Dbwyvx2quL2rFkO+AAAAAAAAAACa/em8UjjntzCePzytfjy4cNesO7M3ObcAAIA/AACAPwBupzwAF58/u7xzPZ6rMr/+ukE9BwcavAAAAAAAAAAAM08bvX5DgT8tzha+JXZ3vxxTk73ah8K8AAAAAAAAAADaJIo9hROPP/oBnT4RNT+/NF72PXsCHz4AAAAAAAAAAE3VVz0pQDq8jeb0u21WBD1IbZE9kFCEvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXU4JiMn1b0CUhpRSlIwBbJRLpIwBdJRHQLRONVXmvGJ1fZQoaAZoCWgPQwgKFLGIIeNwQJSGlFKUaBVLqWgWR0C0Tj4lD4QCdX2UKGgGaAloD0MIq7AZ4AJAckCUhpRSlGgVS65oFkdAtE49Sk0rLHV9lChoBmgJaA9DCKDhzRr8TnJAlIaUUpRoFUuGaBZHQLROVYE4ecR1fZQoaAZoCWgPQwhSmPc4U3ZxQJSGlFKUaBVLzmgWR0C0TlQwfyPNdX2UKGgGaAloD0MI3gIJih8NRECUhpRSlGgVS29oFkdAtE5Zs41gpnV9lChoBmgJaA9DCKZ7ndQXRHNAlIaUUpRoFUvYaBZHQLROYGlANXp1fZQoaAZoCWgPQwhWgsXhzNlxQJSGlFKUaBVLo2gWR0C0Tm5qREF4dX2UKGgGaAloD0MIS1tc4zO/cECUhpRSlGgVS5poFkdAtE563solU3V9lChoBmgJaA9DCFtB0xJrY3FAlIaUUpRoFUuwaBZHQLROkZUDMeR1fZQoaAZoCWgPQwghdTv7ii5zQJSGlFKUaBVL8mgWR0C0Tp1ajesQdX2UKGgGaAloD0MIqbwd4TTTckCUhpRSlGgVS7NoFkdAtE6cgdOqN3V9lChoBmgJaA9DCGMOgo6WQnJAlIaUUpRoFUuRaBZHQLROoX/HYHx1fZQoaAZoCWgPQwi++njou9lyQJSGlFKUaBVL1GgWR0C0Tq1A3T/idX2UKGgGaAloD0MIiULLun/ycECUhpRSlGgVS8RoFkdAtE6wMLF4s3V9lChoBmgJaA9DCDeKrDXUMXFAlIaUUpRoFUuiaBZHQLRO4dY4hll1fZQoaAZoCWgPQwgjwOld/CVyQJSGlFKUaBVL2mgWR0C0TujreIl/dX2UKGgGaAloD0MI7PoFuyHzcECUhpRSlGgVS7poFkdAtE7+BMBZIXV9lChoBmgJaA9DCLHfE+tUI3JAlIaUUpRoFUvWaBZHQLRPA77sOXp1fZQoaAZoCWgPQwiqnPaUnGhyQJSGlFKUaBVLtGgWR0C0TwdrO7g9dX2UKGgGaAloD0MI3GRUGQYhdECUhpRSlGgVS8hoFkdAtE8MUTL4e3V9lChoBmgJaA9DCE8IHXSJbHJAlIaUUpRoFUvUaBZHQLRPEzollbx1fZQoaAZoCWgPQwirWtJRzsBxQJSGlFKUaBVLw2gWR0C0TxsHnlnzdX2UKGgGaAloD0MIy6Da4AR0c0CUhpRSlGgVS7toFkdAtE8qhvitJXV9lChoBmgJaA9DCCYceotHlXNAlIaUUpRoFUvPaBZHQLRPLkmhM8J1fZQoaAZoCWgPQwhbXU4JSIpyQJSGlFKUaBVLvGgWR0C0T0ERaouPdX2UKGgGaAloD0MI7UYf88GOcUCUhpRSlGgVS6NoFkdAtE9cUsWfsnV9lChoBmgJaA9DCIidKXTewHNAlIaUUpRoFUu/aBZHQLRPYtmL9/B1fZQoaAZoCWgPQwhBnl2+NcVzQJSGlFKUaBVL9mgWR0C0T3SSq2jPdX2UKGgGaAloD0MI5DJuaiARckCUhpRSlGgVS6loFkdAtE90Vh1DB3V9lChoBmgJaA9DCN45lKFqz3FAlIaUUpRoFUvQaBZHQLRPf3vQWvd1fZQoaAZoCWgPQwiXNhyWxmRxQJSGlFKUaBVLz2gWR0C0T60sWfsedX2UKGgGaAloD0MIZcix9cyWckCUhpRSlGgVS9loFkdAtE+spTdcjnV9lChoBmgJaA9DCNi5aTNOP0VAlIaUUpRoFUtdaBZHQLRPsDYywfR1fZQoaAZoCWgPQwhAvRk1X4pwQJSGlFKUaBVLlmgWR0C0T9BbKRuCdX2UKGgGaAloD0MIw5s1eF8XcUCUhpRSlGgVS7NoFkdAtE/XSOR1YHV9lChoBmgJaA9DCMOAJVdxp3BAlIaUUpRoFUuWaBZHQLRP/7J4jbB1fZQoaAZoCWgPQwiiQQqeQqdxQJSGlFKUaBVLvGgWR0C0UCo6bONYdX2UKGgGaAloD0MIDqFKzR7obkCUhpRSlGgVS5doFkdAtFAuSdOIqXV9lChoBmgJaA9DCOW1ErrL0nNAlIaUUpRoFUu9aBZHQLRQMTwDvE11fZQoaAZoCWgPQwgJFRxeEAZyQJSGlFKUaBVLz2gWR0C0UDFUQ04zdX2UKGgGaAloD0MI75BigMRCckCUhpRSlGgVS6xoFkdAtFA1KvmoznV9lChoBmgJaA9DCFPNrKUA9nBAlIaUUpRoFUupaBZHQLRQPgTh5xB1fZQoaAZoCWgPQwjOqs/VVnRxQJSGlFKUaBVLxGgWR0C0UEjfzjFRdX2UKGgGaAloD0MIBrr2BbTxckCUhpRSlGgVS9ZoFkdAtFBRujynUHV9lChoBmgJaA9DCChFK/cC9nFAlIaUUpRoFUuUaBZHQLRQgPV/c351fZQoaAZoCWgPQwj4GKw41XokQJSGlFKUaBVLXWgWR0C0UISqyWzGdX2UKGgGaAloD0MInkKu1DNfcUCUhpRSlGgVS7BoFkdAtFCEjv/ipHV9lChoBmgJaA9DCBtkkpHzFnRAlIaUUpRoFUu6aBZHQLRQlyaNMoN1fZQoaAZoCWgPQwiFeCRenr9yQJSGlFKUaBVL2mgWR0C0UJss+V1PdX2UKGgGaAloD0MI38X7cTs+cUCUhpRSlGgVS7doFkdAtFDR6/qPfnV9lChoBmgJaA9DCMKk+PhEQHFAlIaUUpRoFU1bAWgWR0C0UPqfSQYDdX2UKGgGaAloD0MIgzEiUei9b0CUhpRSlGgVS5hoFkdAtFD+zQeFL3V9lChoBmgJaA9DCISCUrQyPnBAlIaUUpRoFUumaBZHQLRQ/lum78N1fZQoaAZoCWgPQwgJU5RLI0hxQJSGlFKUaBVLvGgWR0C0UQJcX3xndX2UKGgGaAloD0MIob/QI4Z7ckCUhpRSlGgVS8FoFkdAtFETCl7+k3V9lChoBmgJaA9DCDHO34SCznBAlIaUUpRoFUuxaBZHQLRREadc0Lt1fZQoaAZoCWgPQwhywRn8/ZFwQJSGlFKUaBVLvmgWR0C0USXPZ7HAdX2UKGgGaAloD0MIP6iLFIpUcUCUhpRSlGgVS7loFkdAtFEkpCrtFHV9lChoBmgJaA9DCPJBz2ZVIXBAlIaUUpRoFUuPaBZHQLRRLRywOe91fZQoaAZoCWgPQwjlYDYBhvByQJSGlFKUaBVLu2gWR0C0UTFf/m1ZdX2UKGgGaAloD0MIwMx38NNHcUCUhpRSlGgVS7RoFkdAtFFN/Ue+23V9lChoBmgJaA9DCMqmXOGdHHBAlIaUUpRoFUudaBZHQLRRYonrpq11fZQoaAZoCWgPQwhXdyy2iXNwQJSGlFKUaBVLpmgWR0C0UWch1TzedX2UKGgGaAloD0MIOIdrtYfUcUCUhpRSlGgVS7doFkdAtFFmqsEJSnV9lChoBmgJaA9DCMlWl1MCZkFAlIaUUpRoFUtnaBZHQLRRZon8baR1fZQoaAZoCWgPQwj04VmCzFtyQJSGlFKUaBVLpGgWR0C0UWZssQNDdX2UKGgGaAloD0MIa0QwDi5/ckCUhpRSlGgVS+VoFkdAtFFrbxmTT3V9lChoBmgJaA9DCDrq6LjaGXJAlIaUUpRoFUvWaBZHQLRRcwsGxD91fZQoaAZoCWgPQwjHKTqSy1FzQJSGlFKUaBVL7WgWR0C0UXbUb1h9dX2UKGgGaAloD0MIdaxSema+cUCUhpRSlGgVS85oFkdAtFF63NLUTnV9lChoBmgJaA9DCAIoRpbMM3FAlIaUUpRoFUvBaBZHQLRRjmBvrGB1fZQoaAZoCWgPQwhpjxfS4RFxQJSGlFKUaBVLk2gWR0C0UZU/GEPEdX2UKGgGaAloD0MIRBX+DC8jcECUhpRSlGgVS6poFkdAtFGdBD5TInV9lChoBmgJaA9DCLLWUGov63NAlIaUUpRoFUuzaBZHQLRRsdl/Yrd1fZQoaAZoCWgPQwhkBFQ4Ar5xQJSGlFKUaBVL3WgWR0C0Ucg1JlJ6dX2UKGgGaAloD0MIAgzLn+8qdECUhpRSlGgVS/VoFkdAtFHUD3dsSHV9lChoBmgJaA9DCBISaRv/E3FAlIaUUpRoFUuyaBZHQLRR19c8klh1fZQoaAZoCWgPQwiGkPP+/xpzQJSGlFKUaBVL2GgWR0C0UeZimVJMdX2UKGgGaAloD0MI5jxjX3KWc0CUhpRSlGgVS9ZoFkdAtFHrustCiXV9lChoBmgJaA9DCL1zKEOVAXBAlIaUUpRoFUuZaBZHQLRR+gZCOWB1fZQoaAZoCWgPQwiXUwJiEghyQJSGlFKUaBVLpmgWR0C0Uf3aN+9bdX2UKGgGaAloD0MIq+ek9035cECUhpRSlGgVS8RoFkdAtFIhaOgg5nV9lChoBmgJaA9DCM+hDFXxxHJAlIaUUpRoFUu3aBZHQLRSNdcSoOx1fZQoaAZoCWgPQwhS81XyMR1yQJSGlFKUaBVL1GgWR0C0Ukc0xdpqdX2UKGgGaAloD0MIK98zEqFKcECUhpRSlGgVS7BoFkdAtFJWDqW1MXV9lChoBmgJaA9DCDp6/N7minFAlIaUUpRoFUugaBZHQLRSnevIOpd1fZQoaAZoCWgPQwjKN9vcWDZyQJSGlFKUaBVL02gWR0C0Up1l05lwdX2UKGgGaAloD0MIVwkWh/NkckCUhpRSlGgVS6FoFkdAtFKpImPYF3V9lChoBmgJaA9DCFDkSdJ153FAlIaUUpRoFUu7aBZHQLRSrl+mWMV1fZQoaAZoCWgPQwi29j5VRcVyQJSGlFKUaBVL1WgWR0C0UrcZk079dX2UKGgGaAloD0MIZMxdS4iIdECUhpRSlGgVS+poFkdAtFLXDjzZpXV9lChoBmgJaA9DCD/G3LWEJl1AlIaUUpRoFU3oA2gWR0C0UtwdbPhRdX2UKGgGaAloD0MIfQOTGwVBcUCUhpRSlGgVS69oFkdAtFLgytV7yHV9lChoBmgJaA9DCPeuQV/6bXBAlIaUUpRoFUuxaBZHQLRS7EPlMh51fZQoaAZoCWgPQwgWvr7W5RRzQJSGlFKUaBVL1GgWR0C0UvTUmUnpdX2UKGgGaAloD0MIR4/f2/SxcECUhpRSlGgVS8VoFkdAtFMLzbvgFXV9lChoBmgJaA9DCGCSyhSzl3FAlIaUUpRoFUu3aBZHQLRTFXJo0yh1fZQoaAZoCWgPQwjvycNCrZlwQJSGlFKUaBVLpmgWR0C0UxjjJdSmdX2UKGgGaAloD0MIih2NQ300b0CUhpRSlGgVS6FoFkdAtFMeASWZ7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.995, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMEAIAA7JSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200a03ad4cf8a2500e84327f906af6846f51fda4b1f176094bf720ccbdf11ffe
|
3 |
+
size 146288
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0ecdd65f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0ecdd6680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0ecdd6710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0ecdd67a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb0ecdd6830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb0ecdd68c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0ecdd6950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb0ecdd69e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0ecdd6a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0ecdd6b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0ecdd6b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb0ecdd1f40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 64,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652521269.6639104,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxkL2hvbWUvbmFkaXJiZWtvdi9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAMBcHr772fI7Q+YyPjEauLybwbS9RaTfPgAAgD8AAAAAM61rPBBMqj+S+fY9t67jvkUzFTxzOBY8AAAAAAAAAADAEXo+VIlePhrarL6Fb+6+5YtMPfYmeL0AAAAAAAAAAH1ylr6jb7M+DjVQPmMqxb7O2Gu+4L5TPgAAAAAAAAAApvvavWxY1jwWjd8+xFmivrZ9T73NrpU+AAAAAAAAAACziGw9j95Guo24aTMkFzAwoZSPOmoCvbMAAIA/AACAP/qDID6h/FU/8kKoPnYeOb+HvJA+rvr9PQAAAAAAAAAAzfPKPMO5b7qPQ0QycG/rsN/2pDqOCZSyAACAPwAAgD+a1fS7ISqeP9ZCZb30wjq/Fh8ROtobNjwAAAAAAAAAAPqdkz4EnYc+fvfQvmQ8275zO/M8jvI5vgAAAAAAAAAAZubTvHtGw7p9Qd+7ERDvuBkK17l6AVQ4AACAPwAAgD8gn04+/gvRPQKjqr5JFIe+yzj8OyCh5b0AAAAAAAAAADOTRz1cOAG8Ukwavg5ZJj0jt1Q9z7IHvgAAgD8AAIA/Gm0FPlyOKD1V7yO+GakCvpGmtbzuuNa7AAAAAAAAAAAzUNs8KaxSusDiiTxCkgsz4pwUOwO7dDMAAIA/AACAPzNvKz3bVv89vz8AvpqE2r5++N47REW2vQAAAAAAAAAAZmWkvIWxzTwOytY966hivvVARz3k4yY9AAAAAAAAAACzPhk9dp4jPZT3iL2qXpS+G9i1PJozNr0AAAAAAAAAAIB6Nj5pP3y8DxySOmGS0LgN2+29GkC8uQAAgD8AAIA/Grg8voivtz4gKD89Psk0v66wir5O2tU9AAAAAAAAAABGokG+iH6nvPK6MbusWpW5eRsWPjrUZzoAAIA/AACAPzM6zj2kNwA8qh0Svkk2i76TrT89SMPQvAAAAAAAAAAAmgP+PCnIQroGfx++TkTqNw8J37qu5FK3AACAPwAAgD9Nmmu9haO5uRq3p7y+m4Qx/9KKuw3Ed7MAAIA/AACAP/PUSL44FdM+8KmzvJSfK7+KoWG+OCDyPQAAAAAAAAAAGlFKvsFrzLzMyQU7GA+DOfVwMD6KxS+6AACAPwAAgD+zWKa9y5p3P+9xLL4B8U2/1ArVvR3HWr0AAAAAAAAAAFquIz4ceE0+bFYIPCQY0L7M3jg+BvEEPQAAAAAAAAAAzQuLvL6YvT0N5ag91TmjvioSBz37sC89AAAAAAAAAADg0DM+iN6VvCJ6GrsR+3E5Ao8EvurCTjoAAIA/AACAP5pBnzsU2Lm6frojMiuderClqxK6UaZLsgAAgD8AAIA/Mzsbu7SQyD4ylEs9JzIiv9Bi0bwsKkU9AAAAAAAAAADN5bU8ewKPuk3uOrNkMPAuSHAWuOGxxzMAAIA/AACAP3O47b0y978/im/ivpJ8OL5Cjga+HOrDvQAAAAAAAAAA5jY1vc8RE7w2KnY+CSu8vbyeEL23QB0/AACAPwAAgD8TVy2+FJSCPwEoBL9MxTq/JyKJvu9Whr4AAAAAAAAAALqyPr6b/I+8cB28u+n/I7oPXQQ+yFkCOwAAgD8AAIA/c5mHvZJYmz+eqey+vr1Vv8UXhb3sM4m+AAAAAAAAAABzRMO9qL6uPb5hqT2ZOKm+h1SuvPYISjwAAAAAAAAAAGa6MTyMvS8/AuUOPbcPZb8Jmz48CBIXOwAAAAAAAAAAJqpVvrYmfbwY5FS3amN1tV881j1lyYE2AACAPwAAgD8Aazy+iC6yvFBtJDys2YK8GDAiPhu+Er0AAAAAAAAAAGBmRD6EABY/Xl6HPL9bML8NCGU+uD8LvQAAAAAAAAAAzXQbvT16HLl0dyG95AurMYQMq7t+LY8zAACAPwAAgD9mCci8TypKvDIBsTwrFeU8XzF/veYvVb0AAIA/AACAPwAXuL32Bxk7Szl0PA4ugjzq4c66ddQPPAAAAAAAAAAAc7UDvvb3QzuFJnY+ez6CvWb40L2BhJg+AACAPwAAAACapjW9ru3+uoj/2L0prf07YvotPDoL5rwAAIA/AACAPwCenjwww6I/piOJPVS1FL8VFnw9bRwxPQAAAAAAAAAAum0ivpwlBLwdEU48fpmaPFhHWz20B4G9AACAPwAAgD8zYYC8V9tnPDMmu71FT4W+oxu4vIrACrsAAAAAAAAAALNIPb0UlKa67nYCPi3UKrM7/KE68080swAAgD8AAIA/uh+yvom5Yj8+EYi+gacOv0aV474+aOy8AAAAAAAAAADNrCY8wzUvOXIo1DnQl3Y13rYLPO3pALkAAIA/AACAP2Yv2r08grk+nJStvcf3HL/JlLO9WPz4vAAAAAAAAAAAAGaKvLfMLz9sTMc858dtv6hkA7x3bwA+AAAAAAAAAAAqyx+/MK80vvIxu772Jgk9BeZuvksq074AAIA/AACAP949m77YlLw+Xt/qPq+J9b5Aqxa+4keOPgAAAAAAAAAAAC6nvfKvnT8YVPi+Dbwyvx2quL2rFkO+AAAAAAAAAACa/em8UjjntzCePzytfjy4cNesO7M3ObcAAIA/AACAPwBupzwAF58/u7xzPZ6rMr/+ukE9BwcavAAAAAAAAAAAM08bvX5DgT8tzha+JXZ3vxxTk73ah8K8AAAAAAAAAADaJIo9hROPP/oBnT4RNT+/NF72PXsCHz4AAAAAAAAAAE3VVz0pQDq8jeb0u21WBD1IbZE9kFCEvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXU4JiMn1b0CUhpRSlIwBbJRLpIwBdJRHQLRONVXmvGJ1fZQoaAZoCWgPQwgKFLGIIeNwQJSGlFKUaBVLqWgWR0C0Tj4lD4QCdX2UKGgGaAloD0MIq7AZ4AJAckCUhpRSlGgVS65oFkdAtE49Sk0rLHV9lChoBmgJaA9DCKDhzRr8TnJAlIaUUpRoFUuGaBZHQLROVYE4ecR1fZQoaAZoCWgPQwhSmPc4U3ZxQJSGlFKUaBVLzmgWR0C0TlQwfyPNdX2UKGgGaAloD0MI3gIJih8NRECUhpRSlGgVS29oFkdAtE5Zs41gpnV9lChoBmgJaA9DCKZ7ndQXRHNAlIaUUpRoFUvYaBZHQLROYGlANXp1fZQoaAZoCWgPQwhWgsXhzNlxQJSGlFKUaBVLo2gWR0C0Tm5qREF4dX2UKGgGaAloD0MIS1tc4zO/cECUhpRSlGgVS5poFkdAtE563solU3V9lChoBmgJaA9DCFtB0xJrY3FAlIaUUpRoFUuwaBZHQLROkZUDMeR1fZQoaAZoCWgPQwghdTv7ii5zQJSGlFKUaBVL8mgWR0C0Tp1ajesQdX2UKGgGaAloD0MIqbwd4TTTckCUhpRSlGgVS7NoFkdAtE6cgdOqN3V9lChoBmgJaA9DCGMOgo6WQnJAlIaUUpRoFUuRaBZHQLROoX/HYHx1fZQoaAZoCWgPQwi++njou9lyQJSGlFKUaBVL1GgWR0C0Tq1A3T/idX2UKGgGaAloD0MIiULLun/ycECUhpRSlGgVS8RoFkdAtE6wMLF4s3V9lChoBmgJaA9DCDeKrDXUMXFAlIaUUpRoFUuiaBZHQLRO4dY4hll1fZQoaAZoCWgPQwgjwOld/CVyQJSGlFKUaBVL2mgWR0C0TujreIl/dX2UKGgGaAloD0MI7PoFuyHzcECUhpRSlGgVS7poFkdAtE7+BMBZIXV9lChoBmgJaA9DCLHfE+tUI3JAlIaUUpRoFUvWaBZHQLRPA77sOXp1fZQoaAZoCWgPQwiqnPaUnGhyQJSGlFKUaBVLtGgWR0C0TwdrO7g9dX2UKGgGaAloD0MI3GRUGQYhdECUhpRSlGgVS8hoFkdAtE8MUTL4e3V9lChoBmgJaA9DCE8IHXSJbHJAlIaUUpRoFUvUaBZHQLRPEzollbx1fZQoaAZoCWgPQwirWtJRzsBxQJSGlFKUaBVLw2gWR0C0TxsHnlnzdX2UKGgGaAloD0MIy6Da4AR0c0CUhpRSlGgVS7toFkdAtE8qhvitJXV9lChoBmgJaA9DCCYceotHlXNAlIaUUpRoFUvPaBZHQLRPLkmhM8J1fZQoaAZoCWgPQwhbXU4JSIpyQJSGlFKUaBVLvGgWR0C0T0ERaouPdX2UKGgGaAloD0MI7UYf88GOcUCUhpRSlGgVS6NoFkdAtE9cUsWfsnV9lChoBmgJaA9DCIidKXTewHNAlIaUUpRoFUu/aBZHQLRPYtmL9/B1fZQoaAZoCWgPQwhBnl2+NcVzQJSGlFKUaBVL9mgWR0C0T3SSq2jPdX2UKGgGaAloD0MI5DJuaiARckCUhpRSlGgVS6loFkdAtE90Vh1DB3V9lChoBmgJaA9DCN45lKFqz3FAlIaUUpRoFUvQaBZHQLRPf3vQWvd1fZQoaAZoCWgPQwiXNhyWxmRxQJSGlFKUaBVLz2gWR0C0T60sWfsedX2UKGgGaAloD0MIZcix9cyWckCUhpRSlGgVS9loFkdAtE+spTdcjnV9lChoBmgJaA9DCNi5aTNOP0VAlIaUUpRoFUtdaBZHQLRPsDYywfR1fZQoaAZoCWgPQwhAvRk1X4pwQJSGlFKUaBVLlmgWR0C0T9BbKRuCdX2UKGgGaAloD0MIw5s1eF8XcUCUhpRSlGgVS7NoFkdAtE/XSOR1YHV9lChoBmgJaA9DCMOAJVdxp3BAlIaUUpRoFUuWaBZHQLRP/7J4jbB1fZQoaAZoCWgPQwiiQQqeQqdxQJSGlFKUaBVLvGgWR0C0UCo6bONYdX2UKGgGaAloD0MIDqFKzR7obkCUhpRSlGgVS5doFkdAtFAuSdOIqXV9lChoBmgJaA9DCOW1ErrL0nNAlIaUUpRoFUu9aBZHQLRQMTwDvE11fZQoaAZoCWgPQwgJFRxeEAZyQJSGlFKUaBVLz2gWR0C0UDFUQ04zdX2UKGgGaAloD0MI75BigMRCckCUhpRSlGgVS6xoFkdAtFA1KvmoznV9lChoBmgJaA9DCFPNrKUA9nBAlIaUUpRoFUupaBZHQLRQPgTh5xB1fZQoaAZoCWgPQwjOqs/VVnRxQJSGlFKUaBVLxGgWR0C0UEjfzjFRdX2UKGgGaAloD0MIBrr2BbTxckCUhpRSlGgVS9ZoFkdAtFBRujynUHV9lChoBmgJaA9DCChFK/cC9nFAlIaUUpRoFUuUaBZHQLRQgPV/c351fZQoaAZoCWgPQwj4GKw41XokQJSGlFKUaBVLXWgWR0C0UISqyWzGdX2UKGgGaAloD0MInkKu1DNfcUCUhpRSlGgVS7BoFkdAtFCEjv/ipHV9lChoBmgJaA9DCBtkkpHzFnRAlIaUUpRoFUu6aBZHQLRQlyaNMoN1fZQoaAZoCWgPQwiFeCRenr9yQJSGlFKUaBVL2mgWR0C0UJss+V1PdX2UKGgGaAloD0MI38X7cTs+cUCUhpRSlGgVS7doFkdAtFDR6/qPfnV9lChoBmgJaA9DCMKk+PhEQHFAlIaUUpRoFU1bAWgWR0C0UPqfSQYDdX2UKGgGaAloD0MIgzEiUei9b0CUhpRSlGgVS5hoFkdAtFD+zQeFL3V9lChoBmgJaA9DCISCUrQyPnBAlIaUUpRoFUumaBZHQLRQ/lum78N1fZQoaAZoCWgPQwgJU5RLI0hxQJSGlFKUaBVLvGgWR0C0UQJcX3xndX2UKGgGaAloD0MIob/QI4Z7ckCUhpRSlGgVS8FoFkdAtFETCl7+k3V9lChoBmgJaA9DCDHO34SCznBAlIaUUpRoFUuxaBZHQLRREadc0Lt1fZQoaAZoCWgPQwhywRn8/ZFwQJSGlFKUaBVLvmgWR0C0USXPZ7HAdX2UKGgGaAloD0MIP6iLFIpUcUCUhpRSlGgVS7loFkdAtFEkpCrtFHV9lChoBmgJaA9DCPJBz2ZVIXBAlIaUUpRoFUuPaBZHQLRRLRywOe91fZQoaAZoCWgPQwjlYDYBhvByQJSGlFKUaBVLu2gWR0C0UTFf/m1ZdX2UKGgGaAloD0MIwMx38NNHcUCUhpRSlGgVS7RoFkdAtFFN/Ue+23V9lChoBmgJaA9DCMqmXOGdHHBAlIaUUpRoFUudaBZHQLRRYonrpq11fZQoaAZoCWgPQwhXdyy2iXNwQJSGlFKUaBVLpmgWR0C0UWch1TzedX2UKGgGaAloD0MIOIdrtYfUcUCUhpRSlGgVS7doFkdAtFFmqsEJSnV9lChoBmgJaA9DCMlWl1MCZkFAlIaUUpRoFUtnaBZHQLRRZon8baR1fZQoaAZoCWgPQwj04VmCzFtyQJSGlFKUaBVLpGgWR0C0UWZssQNDdX2UKGgGaAloD0MIa0QwDi5/ckCUhpRSlGgVS+VoFkdAtFFrbxmTT3V9lChoBmgJaA9DCDrq6LjaGXJAlIaUUpRoFUvWaBZHQLRRcwsGxD91fZQoaAZoCWgPQwjHKTqSy1FzQJSGlFKUaBVL7WgWR0C0UXbUb1h9dX2UKGgGaAloD0MIdaxSema+cUCUhpRSlGgVS85oFkdAtFF63NLUTnV9lChoBmgJaA9DCAIoRpbMM3FAlIaUUpRoFUvBaBZHQLRRjmBvrGB1fZQoaAZoCWgPQwhpjxfS4RFxQJSGlFKUaBVLk2gWR0C0UZU/GEPEdX2UKGgGaAloD0MIRBX+DC8jcECUhpRSlGgVS6poFkdAtFGdBD5TInV9lChoBmgJaA9DCLLWUGov63NAlIaUUpRoFUuzaBZHQLRRsdl/Yrd1fZQoaAZoCWgPQwhkBFQ4Ar5xQJSGlFKUaBVL3WgWR0C0Ucg1JlJ6dX2UKGgGaAloD0MIAgzLn+8qdECUhpRSlGgVS/VoFkdAtFHUD3dsSHV9lChoBmgJaA9DCBISaRv/E3FAlIaUUpRoFUuyaBZHQLRR19c8klh1fZQoaAZoCWgPQwiGkPP+/xpzQJSGlFKUaBVL2GgWR0C0UeZimVJMdX2UKGgGaAloD0MI5jxjX3KWc0CUhpRSlGgVS9ZoFkdAtFHrustCiXV9lChoBmgJaA9DCL1zKEOVAXBAlIaUUpRoFUuZaBZHQLRR+gZCOWB1fZQoaAZoCWgPQwiXUwJiEghyQJSGlFKUaBVLpmgWR0C0Uf3aN+9bdX2UKGgGaAloD0MIq+ek9035cECUhpRSlGgVS8RoFkdAtFIhaOgg5nV9lChoBmgJaA9DCM+hDFXxxHJAlIaUUpRoFUu3aBZHQLRSNdcSoOx1fZQoaAZoCWgPQwhS81XyMR1yQJSGlFKUaBVL1GgWR0C0Ukc0xdpqdX2UKGgGaAloD0MIK98zEqFKcECUhpRSlGgVS7BoFkdAtFJWDqW1MXV9lChoBmgJaA9DCDp6/N7minFAlIaUUpRoFUugaBZHQLRSnevIOpd1fZQoaAZoCWgPQwjKN9vcWDZyQJSGlFKUaBVL02gWR0C0Up1l05lwdX2UKGgGaAloD0MIVwkWh/NkckCUhpRSlGgVS6FoFkdAtFKpImPYF3V9lChoBmgJaA9DCFDkSdJ153FAlIaUUpRoFUu7aBZHQLRSrl+mWMV1fZQoaAZoCWgPQwi29j5VRcVyQJSGlFKUaBVL1WgWR0C0UrcZk079dX2UKGgGaAloD0MIZMxdS4iIdECUhpRSlGgVS+poFkdAtFLXDjzZpXV9lChoBmgJaA9DCD/G3LWEJl1AlIaUUpRoFU3oA2gWR0C0UtwdbPhRdX2UKGgGaAloD0MIfQOTGwVBcUCUhpRSlGgVS69oFkdAtFLgytV7yHV9lChoBmgJaA9DCPeuQV/6bXBAlIaUUpRoFUuxaBZHQLRS7EPlMh51fZQoaAZoCWgPQwgWvr7W5RRzQJSGlFKUaBVL1GgWR0C0UvTUmUnpdX2UKGgGaAloD0MIR4/f2/SxcECUhpRSlGgVS8VoFkdAtFMLzbvgFXV9lChoBmgJaA9DCGCSyhSzl3FAlIaUUpRoFUu3aBZHQLRTFXJo0yh1fZQoaAZoCWgPQwjvycNCrZlwQJSGlFKUaBVLpmgWR0C0UxjjJdSmdX2UKGgGaAloD0MIih2NQ300b0CUhpRSlGgVS6FoFkdAtFMeASWZ7XVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 368,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.995,
|
82 |
+
"ent_coef": 0.005,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 32,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMEAIAA7JSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b35f6c4a390d4357ae1b946b66a137afba1727907b1bb4886694cba179a9edc4
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c444d69b9565623130a6d8e5ae0acdd3c9064229dd00d20906e96f5052e2e2cf
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Fri Apr 2 22:23:49 UTC 2021
|
2 |
+
Python: 3.10.4
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d065825d04957d8408ef60b9ab2e8219a2bab4dfa7a1ca1312f158b4f078b379
|
3 |
+
size 210262
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.148135673185, "std_reward": 17.02905013143616, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T14:39:34.022638"}
|