Create README.md
Browse filesupdated model card
README.md
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- gpt-oss
|
| 7 |
+
- openai
|
| 8 |
+
- mxfp4
|
| 9 |
+
- mixture-of-experts
|
| 10 |
+
- causal-lm
|
| 11 |
+
- text-generation
|
| 12 |
+
- cpu-gpu-offload
|
| 13 |
+
- colab
|
| 14 |
+
datasets:
|
| 15 |
+
- openai/gpt-oss-training-data # Placeholder; replace if known
|
| 16 |
+
pipeline_tag: text-generation
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Model Card for gpt-oss-20b-offload
|
| 20 |
+
|
| 21 |
+
This is a CPU+GPU offload‑ready copy of **OpenAI’s GPT‑OSS‑20B** model, an open‑source, Mixture‑of‑Experts large language model released by OpenAI in 2025.
|
| 22 |
+
The model here retains OpenAI’s original **MXFP4 quantization** and is configured for **memory‑efficient loading in Colab or similar GPU environments**.
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## Model Details
|
| 27 |
+
|
| 28 |
+
### Model Description
|
| 29 |
+
|
| 30 |
+
- **Developed by:** OpenAI
|
| 31 |
+
- **Shared by:** saurabh-srivastava (Hugging Face user)
|
| 32 |
+
- **Model type:** Decoder‑only transformer (Mixture‑of‑Experts) for causal language modeling
|
| 33 |
+
- **Active experts per token:** 4 / 32 total experts
|
| 34 |
+
- **Language(s):** English (with capability for multilingual text generation)
|
| 35 |
+
- **License:** MIT (per OpenAI GPT‑OSS release)
|
| 36 |
+
- **Finetuned from model:** `openai/gpt-oss-20b` (no additional fine‑tuning performed)
|
| 37 |
+
|
| 38 |
+
### Model Sources
|
| 39 |
+
|
| 40 |
+
- **Original model repository:** [https://huggingface.co/openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
|
| 41 |
+
- **OpenAI announcement:** [https://openai.com/index/introducing-gpt-oss/](https://openai.com/index/introducing-gpt-oss/)
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## Uses
|
| 46 |
+
|
| 47 |
+
### Direct Use
|
| 48 |
+
- Text generation, summarization, and question answering.
|
| 49 |
+
- Running inference in low‑VRAM environments using CPU+GPU offload.
|
| 50 |
+
|
| 51 |
+
### Downstream Use
|
| 52 |
+
- Fine‑tuning for domain‑specific assistants.
|
| 53 |
+
- Integration into chatbots or generative applications.
|
| 54 |
+
|
| 55 |
+
### Out‑of‑Scope Use
|
| 56 |
+
- Generating harmful, biased, or false information.
|
| 57 |
+
- Any high‑stakes decision‑making without human oversight.
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## Bias, Risks, and Limitations
|
| 62 |
+
|
| 63 |
+
Like all large language models, GPT‑OSS‑20B can:
|
| 64 |
+
- Produce factually incorrect or outdated information.
|
| 65 |
+
- Reflect biases present in its training data.
|
| 66 |
+
- Generate harmful or unsafe content if prompted.
|
| 67 |
+
|
| 68 |
+
### Recommendations
|
| 69 |
+
- Always use with a moderation layer.
|
| 70 |
+
- Validate outputs for factual accuracy before use in production.
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## How to Get Started with the Model
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 78 |
+
|
| 79 |
+
model_name = "your-username/gpt-oss-20b-offload"
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 81 |
+
|
| 82 |
+
# Load with CPU+GPU offload
|
| 83 |
+
max_mem = {0: "20GiB", "cpu": "64GiB"}
|
| 84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 85 |
+
model_name,
|
| 86 |
+
torch_dtype="auto",
|
| 87 |
+
device_map="auto",
|
| 88 |
+
max_memory=max_mem
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
inputs = tokenizer("Explain GPT‑OSS‑20B in one paragraph.", return_tensors="pt").to(0)
|
| 92 |
+
outputs = model.generate(**inputs, max_new_tokens=80)
|
| 93 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|