import datetime import logging import logging.handlers import os import sys import math import random import requests import torch.distributed as dist from llava.constants import LOGDIR server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." handler = None def build_logger(logger_name, logger_filename): global handler formatter = logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) # Set the format of root handlers if not logging.getLogger().handlers: logging.basicConfig(level=logging.INFO) logging.getLogger().handlers[0].setFormatter(formatter) # Redirect stdout and stderr to loggers stdout_logger = logging.getLogger("stdout") stdout_logger.setLevel(logging.INFO) sl = StreamToLogger(stdout_logger, logging.INFO) sys.stdout = sl stderr_logger = logging.getLogger("stderr") stderr_logger.setLevel(logging.ERROR) sl = StreamToLogger(stderr_logger, logging.ERROR) sys.stderr = sl # Get logger logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) # Add a file handler for all loggers if handler is None: os.makedirs(LOGDIR, exist_ok=True) filename = os.path.join(LOGDIR, logger_filename) handler = logging.handlers.TimedRotatingFileHandler( filename, when='D', utc=True, encoding='UTF-8') handler.setFormatter(formatter) for name, item in logging.root.manager.loggerDict.items(): if isinstance(item, logging.Logger): item.addHandler(handler) return logger class StreamToLogger(object): """ Fake file-like stream object that redirects writes to a logger instance. """ def __init__(self, logger, log_level=logging.INFO): self.terminal = sys.stdout self.logger = logger self.log_level = log_level self.linebuf = '' def __getattr__(self, attr): return getattr(self.terminal, attr) def write(self, buf): temp_linebuf = self.linebuf + buf self.linebuf = '' for line in temp_linebuf.splitlines(True): # From the io.TextIOWrapper docs: # On output, if newline is None, any '\n' characters written # are translated to the system default line separator. # By default sys.stdout.write() expects '\n' newlines and then # translates them so this is still cross platform. if line[-1] == '\n': self.logger.log(self.log_level, line.rstrip()) else: self.linebuf += line def flush(self): if self.linebuf != '': self.logger.log(self.log_level, self.linebuf.rstrip()) self.linebuf = '' def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) def violates_moderation(text): """ Check whether the text violates OpenAI moderation API. """ url = "https://api.openai.com/v1/moderations" headers = {"Content-Type": "application/json", "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} text = text.replace("\n", "") data = "{" + '"input": ' + f'"{text}"' + "}" data = data.encode("utf-8") try: ret = requests.post(url, headers=headers, data=data, timeout=5) flagged = ret.json()["results"][0]["flagged"] except requests.exceptions.RequestException as e: flagged = False except KeyError as e: flagged = False return flagged def pretty_print_semaphore(semaphore): if semaphore is None: return "None" return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" def master_print(*args): import torch if torch.cuda.current_device() == 0: print(*args) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 class DatasetIter(object): def __init__(self, size, world_size, local_rank, num_workers=1): self.size = size self.world_size = world_size self.local_rank = local_rank # self.num_workers = 1 if num_workers == 0 else num_workers assert num_workers == 1, 'num workers must be 1' self.num_workers = num_workers self.per_worker = int(math.floor(self.size / float(self.world_size * self.num_workers))) self.worker_indexs = dict() for worker_id in range(self.num_workers): self.init_worker_index(worker_id) def init_worker_index(self, worker_id): start = self.per_worker * (self.local_rank * self.num_workers + worker_id) end = min(start + self.per_worker, self.size) rank_indexs = list(range(start, end)) random.shuffle(rank_indexs) self.worker_indexs[worker_id] = rank_indexs def increment(self, worker_id): if len(self.worker_indexs[worker_id]) == 0: self.init_worker_index(worker_id) next_iter, self.worker_indexs[worker_id] = self.worker_indexs[worker_id][0], self.worker_indexs[worker_id][1:] return next_iter