|
import datetime |
|
import logging |
|
import logging.handlers |
|
import os |
|
import sys |
|
import math |
|
import random |
|
import requests |
|
import torch.distributed as dist |
|
|
|
from llava.constants import LOGDIR |
|
|
|
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" |
|
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." |
|
|
|
handler = None |
|
|
|
|
|
def build_logger(logger_name, logger_filename): |
|
global handler |
|
|
|
formatter = logging.Formatter( |
|
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
) |
|
|
|
|
|
if not logging.getLogger().handlers: |
|
logging.basicConfig(level=logging.INFO) |
|
logging.getLogger().handlers[0].setFormatter(formatter) |
|
|
|
|
|
stdout_logger = logging.getLogger("stdout") |
|
stdout_logger.setLevel(logging.INFO) |
|
sl = StreamToLogger(stdout_logger, logging.INFO) |
|
sys.stdout = sl |
|
|
|
stderr_logger = logging.getLogger("stderr") |
|
stderr_logger.setLevel(logging.ERROR) |
|
sl = StreamToLogger(stderr_logger, logging.ERROR) |
|
sys.stderr = sl |
|
|
|
|
|
logger = logging.getLogger(logger_name) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
if handler is None: |
|
os.makedirs(LOGDIR, exist_ok=True) |
|
filename = os.path.join(LOGDIR, logger_filename) |
|
handler = logging.handlers.TimedRotatingFileHandler( |
|
filename, when='D', utc=True, encoding='UTF-8') |
|
handler.setFormatter(formatter) |
|
|
|
for name, item in logging.root.manager.loggerDict.items(): |
|
if isinstance(item, logging.Logger): |
|
item.addHandler(handler) |
|
|
|
return logger |
|
|
|
|
|
class StreamToLogger(object): |
|
""" |
|
Fake file-like stream object that redirects writes to a logger instance. |
|
""" |
|
def __init__(self, logger, log_level=logging.INFO): |
|
self.terminal = sys.stdout |
|
self.logger = logger |
|
self.log_level = log_level |
|
self.linebuf = '' |
|
|
|
def __getattr__(self, attr): |
|
return getattr(self.terminal, attr) |
|
|
|
def write(self, buf): |
|
temp_linebuf = self.linebuf + buf |
|
self.linebuf = '' |
|
for line in temp_linebuf.splitlines(True): |
|
|
|
|
|
|
|
|
|
|
|
if line[-1] == '\n': |
|
self.logger.log(self.log_level, line.rstrip()) |
|
else: |
|
self.linebuf += line |
|
|
|
def flush(self): |
|
if self.linebuf != '': |
|
self.logger.log(self.log_level, self.linebuf.rstrip()) |
|
self.linebuf = '' |
|
|
|
|
|
def disable_torch_init(): |
|
""" |
|
Disable the redundant torch default initialization to accelerate model creation. |
|
""" |
|
import torch |
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) |
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) |
|
|
|
|
|
def violates_moderation(text): |
|
""" |
|
Check whether the text violates OpenAI moderation API. |
|
""" |
|
url = "https://api.openai.com/v1/moderations" |
|
headers = {"Content-Type": "application/json", |
|
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} |
|
text = text.replace("\n", "") |
|
data = "{" + '"input": ' + f'"{text}"' + "}" |
|
data = data.encode("utf-8") |
|
try: |
|
ret = requests.post(url, headers=headers, data=data, timeout=5) |
|
flagged = ret.json()["results"][0]["flagged"] |
|
except requests.exceptions.RequestException as e: |
|
flagged = False |
|
except KeyError as e: |
|
flagged = False |
|
|
|
return flagged |
|
|
|
|
|
def pretty_print_semaphore(semaphore): |
|
if semaphore is None: |
|
return "None" |
|
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" |
|
|
|
def master_print(*args): |
|
import torch |
|
if torch.cuda.current_device() == 0: |
|
print(*args) |
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
class DatasetIter(object): |
|
def __init__(self, size, world_size, local_rank, num_workers=1): |
|
self.size = size |
|
self.world_size = world_size |
|
self.local_rank = local_rank |
|
|
|
assert num_workers == 1, 'num workers must be 1' |
|
self.num_workers = num_workers |
|
self.per_worker = int(math.floor(self.size / float(self.world_size * self.num_workers))) |
|
self.worker_indexs = dict() |
|
|
|
for worker_id in range(self.num_workers): |
|
self.init_worker_index(worker_id) |
|
def init_worker_index(self, worker_id): |
|
|
|
start = self.per_worker * (self.local_rank * self.num_workers + worker_id) |
|
end = min(start + self.per_worker, self.size) |
|
rank_indexs = list(range(start, end)) |
|
random.shuffle(rank_indexs) |
|
|
|
self.worker_indexs[worker_id] = rank_indexs |
|
|
|
def increment(self, worker_id): |
|
|
|
if len(self.worker_indexs[worker_id]) == 0: |
|
self.init_worker_index(worker_id) |
|
|
|
next_iter, self.worker_indexs[worker_id] = self.worker_indexs[worker_id][0], self.worker_indexs[worker_id][1:] |
|
return next_iter |