muhammadnoman76 commited on
Commit
5a177c6
·
verified ·
1 Parent(s): 5c5c1cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -1
README.md CHANGED
@@ -10,4 +10,75 @@ tags:
10
  - urdu
11
  - urduchatbot
12
  - ai
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - urdu
11
  - urduchatbot
12
  - ai
13
+ ---
14
+
15
+ # LughaatBERT
16
+
17
+ LughaatBERT is a transformer-based model fine-tuned for question-answering tasks, designed to power intelligent chatbots and other conversational AI applications. Developed using the Hugging Face ecosystem, it excels at understanding natural language queries and providing accurate, context-aware responses.
18
+
19
+ ## Model Details
20
+
21
+ - **Model Name:** LughaatBERT
22
+ - **Version:** 1.0
23
+ - **Author:** [muhammadnoman76](https://huggingface.co/muhammadnoman76)
24
+ - **Hugging Face Model Hub:** [LughaatBERT](https://huggingface.co/muhammadnoman76/LughaatBERT)
25
+
26
+ ## Key Features
27
+
28
+ - **Natural Language Understanding:** Leverages transformer architecture for precise intent and context comprehension.
29
+ - **Question-Answering Proficiency:** Optimized to provide relevant and accurate answers.
30
+ - **Versatility:** Suitable for a wide range of tasks, including domain-specific applications.
31
+ - **Seamless Integration:** Easily deployable in APIs and chatbot frameworks.
32
+
33
+ ## Applications
34
+
35
+ 1. Interactive question-answering chatbots.
36
+ 2. Knowledge-base retrieval systems.
37
+ 3. Language learning and educational tools.
38
+ 4. Automated customer support solutions.
39
+
40
+ ## How to Use LughaatBERT
41
+
42
+ You can use LughaatBERT with the Hugging Face Transformers library. Below is an example demonstrating how to use it for question-answering:
43
+
44
+ ```python
45
+ from transformers import DistilBertTokenizer, DistilBertModel
46
+
47
+ model_name = "muhammadnoman76/LughaatBERT"
48
+
49
+ tokenizer = DistilBertTokenizer.from_pretrained(model_name)
50
+ model = DistilBertModel.from_pretrained(model_name)
51
+ ```
52
+
53
+ ## Training Details
54
+
55
+ The model was fine-tuned on a diverse question-answering dataset using the Hugging Face Transformers library. It is designed to handle queries with contextual understanding and produce accurate results across various domains.
56
+
57
+ ## Deployment
58
+
59
+ LughaatBERT can be integrated into real-world applications via:
60
+
61
+ - **Hugging Face Pipelines:** Use the simple interface for rapid prototyping.
62
+ - **Custom API Integration:** Load the model in your custom backend for full control.
63
+
64
+ ## Citation
65
+
66
+ If you use LughaatBERT in your research or applications, please cite it as:
67
+
68
+ ```
69
+ @model{LughaatBERT,
70
+ author = {muhammadnoman76},
71
+ title = {LughaatBERT: A Question-Answering Model},
72
+ year = {2024},
73
+ publisher = {Hugging Face},
74
+ url = {https://huggingface.co/muhammadnoman76/LughaatBERT}
75
+ }
76
+ ```
77
+
78
+ ## License
79
+
80
+ This model is available under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
81
+
82
+ ---
83
+
84
+ For any questions or issues, feel free to contact [muhammadnoman76](https://huggingface.co/muhammadnoman76).