ppo-LunarLander-v2 / config.json
msgerasyov's picture
Upload PPO LunarLander-v2 trained agent
4716248
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd797e4f670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd797e4f700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd797e4f790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd797e4f820>", "_build": "<function ActorCriticPolicy._build at 0x7fd797e4f8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd797e4f940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd797e4f9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd797e4fa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd797e4faf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd797e4fb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd797e4fc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd797e4fca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd797e499f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673711846890502780, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP5BL0cFCy8gl87PiWwlj1pgTu88Nz2OwAAgD8AAIA/MwKJvMy/mT569Wi9NjHfvnNmgb1+aum6AAAAAAAAAACawf08NgopvMcWKr7SI7q9eA66PTqICD8AAAAAAACAP2BgTT4bHok/DnKpPYE9DL+KiKc+hm4bvgAAAAAAAAAAGiocvVyrM7pEZwM44cYuM+3MTzt+MBu3AACAPwAAgD/NcnE8XGtzup1QeDuZqW04J5zyOWqLGboAAAAAAAAAAEB1FL7UOZ0+JcC1PeLOwL5RnPS90enKPQAAAAAAAAAAZkhDvDo0Yz8QhX690pgDv71T5TydxAK9AAAAAAAAAAAaUxs90EjjPh5rUL4jIvq+dbrjvefWR70AAAAAAAAAAE2duL1r4GQ/aFMzvnPVGL8oWq29GEXCPAAAAAAAAAAAzSAEvEPHS7xVq4S9PjcoPJcAwD10oQ29AACAPwAAgD8A+wY9yLUEP9L96zuf+8u+XhtgPAqHvLwAAAAAAAAAADPFgjw4scm72UOkO1/pkjzAmSu9OPF3PQAAgD8AAIA/cGK6Pio+fj+uqa28tff4vtRTID+DWK29AAAAAAAAAADa34g9XzbWPhtkUr6PBOW+DWWkvHKk870AAAAAAAAAAAA9WT0u9J09Jzw9vu76xb5csii+v+e9vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF7mnqztyckCUhpRSlIwBbJRL0IwBdJRHQKTXYSzPa+N1fZQoaAZoCWgPQwj51of1hshwQJSGlFKUaBVL0GgWR0Ck13Xbuc+adX2UKGgGaAloD0MIi3H+JtTFc0CUhpRSlGgVS+1oFkdApNfaFEiMYXV9lChoBmgJaA9DCDlkA+lisHFAlIaUUpRoFUu4aBZHQKTX7oV2zOZ1fZQoaAZoCWgPQwj3Oqkvi99wQJSGlFKUaBVLvmgWR0Ck1/8BdUsGdX2UKGgGaAloD0MId/cA3ZeNcECUhpRSlGgVS9BoFkdApNgJ9Vmz0HV9lChoBmgJaA9DCK33G+049G9AlIaUUpRoFUvKaBZHQKTYO89Oh011fZQoaAZoCWgPQwjWAKWhhrZzQJSGlFKUaBVL7WgWR0Ck2JXJYDDCdX2UKGgGaAloD0MIHAsKg7KScECUhpRSlGgVTQkBaBZHQKTYvUGVzIV1fZQoaAZoCWgPQwhkyoegasNyQJSGlFKUaBVL2GgWR0Ck2N3yI55rdX2UKGgGaAloD0MIILb0aGpdcECUhpRSlGgVS8ZoFkdApNkWaScLB3V9lChoBmgJaA9DCIxNK4WAanFAlIaUUpRoFUvVaBZHQKTZJfShJy11fZQoaAZoCWgPQwgxPzc0ZYlzQJSGlFKUaBVL7GgWR0Ck2Xl3Y+SsdX2UKGgGaAloD0MIxFp8CsDNcUCUhpRSlGgVS+BoFkdApNmb5ftx/HV9lChoBmgJaA9DCMu+K4J/NHBAlIaUUpRoFUvQaBZHQKTZpBrN4aB1fZQoaAZoCWgPQwjpLLMIBT5xQJSGlFKUaBVL42gWR0Ck2bxL0z0pdX2UKGgGaAloD0MIJsPxfAbBckCUhpRSlGgVS9loFkdApNnYNPP9k3V9lChoBmgJaA9DCPPMy2H3SnJAlIaUUpRoFUvIaBZHQKTaN8IAwPB1fZQoaAZoCWgPQwiF7/0NmjVzQJSGlFKUaBVL4GgWR0Ck2lcbzbvgdX2UKGgGaAloD0MIO8JpwcsZckCUhpRSlGgVS9toFkdApNpc45tFa3V9lChoBmgJaA9DCILlCBlI93BAlIaUUpRoFUvKaBZHQKTafiobXH11fZQoaAZoCWgPQwhkyRzLO3FxQJSGlFKUaBVL3WgWR0Ck2n6mXPZ7dX2UKGgGaAloD0MIkPeqlYlIckCUhpRSlGgVS9ZoFkdApNtFOEdvKnV9lChoBmgJaA9DCEvNHmhF7HJAlIaUUpRoFUvxaBZHQKTbTStNi6R1fZQoaAZoCWgPQwgyBADH3gtyQJSGlFKUaBVLwWgWR0Ck21h0ZFXrdX2UKGgGaAloD0MIbXAi+rUdckCUhpRSlGgVS+poFkdApNtiWszVMHV9lChoBmgJaA9DCG9IowJnLHNAlIaUUpRoFUvPaBZHQKTbdC0ngHh1fZQoaAZoCWgPQwidL/ZefJZwQJSGlFKUaBVLv2gWR0Ck26Z8KG+LdX2UKGgGaAloD0MIDtdqD/tZcUCUhpRSlGgVS9NoFkdApNwrdvbXYnV9lChoBmgJaA9DCMaoa+09KXFAlIaUUpRoFUvcaBZHQKTcMb1AZ891fZQoaAZoCWgPQwgcfcwHRDh0QJSGlFKUaBVL5WgWR0Ck3EVDrqt6dX2UKGgGaAloD0MIrp/+syaLckCUhpRSlGgVS99oFkdApNz0+RoysXV9lChoBmgJaA9DCOY9zjRhvm9AlIaUUpRoFUvQaBZHQKTc9Fl05lx1fZQoaAZoCWgPQwhUbqKWJuRxQJSGlFKUaBVL9mgWR0Ck5wFCb+cZdX2UKGgGaAloD0MI6Q5iZ0qcckCUhpRSlGgVS+VoFkdApOcbCk43m3V9lChoBmgJaA9DCDULtDsko3NAlIaUUpRoFUv0aBZHQKTnI3nZCfJ1fZQoaAZoCWgPQwgG8YEdf1dwQJSGlFKUaBVLw2gWR0Ck56kB0ZFYdX2UKGgGaAloD0MIE0ceiCwRckCUhpRSlGgVTVUBaBZHQKTnx5cC5mR1fZQoaAZoCWgPQwgTC3xFt3NwQJSGlFKUaBVL12gWR0Ck582UbDMvdX2UKGgGaAloD0MIndoZpraWb0CUhpRSlGgVS9hoFkdApOfXgpBomHV9lChoBmgJaA9DCPiMRGiEb3FAlIaUUpRoFUvZaBZHQKTn474i5d51fZQoaAZoCWgPQwjknq7uWI5xQJSGlFKUaBVL02gWR0Ck5+p+DvmYdX2UKGgGaAloD0MIzCkBMUnEckCUhpRSlGgVS/JoFkdApOh+PLgXM3V9lChoBmgJaA9DCLDJGvWQn29AlIaUUpRoFUvTaBZHQKTonhz/6wd1fZQoaAZoCWgPQwjrOel947JyQJSGlFKUaBVL5GgWR0Ck6NOR1X/6dX2UKGgGaAloD0MIrBkZ5G58ckCUhpRSlGgVS+ZoFkdApOjtmz0HyHV9lChoBmgJaA9DCFq9w+2QlnBAlIaUUpRoFUuwaBZHQKTo+GeMAFR1fZQoaAZoCWgPQwgct5ifG+JxQJSGlFKUaBVLzWgWR0Ck6ZglF+d9dX2UKGgGaAloD0MIYCAIkCFXcECUhpRSlGgVS9loFkdApOnL+JgssnV9lChoBmgJaA9DCAPQKF36MnBAlIaUUpRoFUvyaBZHQKTp0ewLVnV1fZQoaAZoCWgPQwj36A33ETFyQJSGlFKUaBVL7WgWR0Ck6evvjOs1dX2UKGgGaAloD0MIDOVEuworcUCUhpRSlGgVS7ZoFkdApOoiBZpztHV9lChoBmgJaA9DCLH9ZIxPbnFAlIaUUpRoFUu6aBZHQKTqNQMx46h1fZQoaAZoCWgPQwhgHccPFTdxQJSGlFKUaBVLzWgWR0Ck6lMefZmJdX2UKGgGaAloD0MI0QfL2FDPc0CUhpRSlGgVS9loFkdApOpw02tMf3V9lChoBmgJaA9DCL01sFXC0HFAlIaUUpRoFUvqaBZHQKTqhwnYxtZ1fZQoaAZoCWgPQwg7/3bZb59wQJSGlFKUaBVLwWgWR0Ck6v9BjWkKdX2UKGgGaAloD0MIclMDzWfIckCUhpRSlGgVS9VoFkdApOsccyWRinV9lChoBmgJaA9DCDXs98Q6TXRAlIaUUpRoFUvZaBZHQKTrjGNJe3R1fZQoaAZoCWgPQwhaY9AJ4WlyQJSGlFKUaBVL1GgWR0Ck65gTZg5SdX2UKGgGaAloD0MI1H/W/LhsckCUhpRSlGgVS7poFkdApOvzfUF0P3V9lChoBmgJaA9DCL76eOj7dHNAlIaUUpRoFUvRaBZHQKTsf5Y5ksl1fZQoaAZoCWgPQwjIztvYbONzQJSGlFKUaBVL1GgWR0Ck7IRgy/KydX2UKGgGaAloD0MI0sPQ6uQ6b0CUhpRSlGgVS8xoFkdApOzcIiTt9nV9lChoBmgJaA9DCECKOnMPzW5AlIaUUpRoFUvRaBZHQKTs2ZsKsuF1fZQoaAZoCWgPQwiveysSE2BPQJSGlFKUaBVLvGgWR0Ck7QTL4etCdX2UKGgGaAloD0MIZ9MRwE1xc0CUhpRSlGgVS/BoFkdApO0Lpkf9xnV9lChoBmgJaA9DCLWHvVBAsGNAlIaUUpRoFU3oA2gWR0Ck7RVtGd7OdX2UKGgGaAloD0MIED//PbgkcUCUhpRSlGgVS8xoFkdApO0fhybQTnV9lChoBmgJaA9DCEOQgxKmrHJAlIaUUpRoFUvgaBZHQKTtOqS5iEx1fZQoaAZoCWgPQwiNKVjjLBVxQJSGlFKUaBVLt2gWR0Ck7WjA8B+4dX2UKGgGaAloD0MI+daH9cZCckCUhpRSlGgVS/5oFkdApO50TpPhynV9lChoBmgJaA9DCM5PcRx47XBAlIaUUpRoFUvcaBZHQKTucozeoDR1fZQoaAZoCWgPQwjTEiuj0c1xQJSGlFKUaBVL4WgWR0Ck7o4x+KCQdX2UKGgGaAloD0MIYtf2dssncUCUhpRSlGgVS85oFkdApO6lqHoHLXV9lChoBmgJaA9DCG4UWWvocXJAlIaUUpRoFUvOaBZHQKTvJhOP/711fZQoaAZoCWgPQwj7IwwDltBtQJSGlFKUaBVL0GgWR0Ck74NUn5SFdX2UKGgGaAloD0MIqS7gZca5ckCUhpRSlGgVS+toFkdApO+MvkBCD3V9lChoBmgJaA9DCIRjlj1JZHFAlIaUUpRoFUvGaBZHQKTvka86FM91fZQoaAZoCWgPQwiF61G4Xl9wQJSGlFKUaBVLx2gWR0Ck76px//eddX2UKGgGaAloD0MIq+l6omvkcUCUhpRSlGgVS+xoFkdApO/lLrX18XV9lChoBmgJaA9DCDqVDACVxHFAlIaUUpRoFUvnaBZHQKTv+JQcghd1fZQoaAZoCWgPQwgr2bERCDdyQJSGlFKUaBVL32gWR0Ck8Ba/IsAedX2UKGgGaAloD0MI+pl63aKicECUhpRSlGgVS9RoFkdApPAoM4LkS3V9lChoBmgJaA9DCD19BP7wLnJAlIaUUpRoFUv1aBZHQKTwMRAbADd1fZQoaAZoCWgPQwg83XniebBxQJSGlFKUaBVLymgWR0Ck8Qba7EpBdX2UKGgGaAloD0MIxVVl39Xoc0CUhpRSlGgVS9xoFkdApPFEcdYGMXV9lChoBmgJaA9DCBAjhEcbQnFAlIaUUpRoFUvraBZHQKTxmLyc0+F1fZQoaAZoCWgPQwjZBYNrbrZzQJSGlFKUaBVNCAFoFkdApPIr4DcM3XV9lChoBmgJaA9DCKq53GCotHFAlIaUUpRoFUvGaBZHQKTyOla8pTd1fZQoaAZoCWgPQwilMVpHlcVyQJSGlFKUaBVL42gWR0Ck8pcU21lYdX2UKGgGaAloD0MIU14robsbcECUhpRSlGgVS+loFkdApPK3ZCfHxXV9lChoBmgJaA9DCFitTPilkHNAlIaUUpRoFUvNaBZHQKTyyFY+0PZ1fZQoaAZoCWgPQwj6fJQR111yQJSGlFKUaBVL0GgWR0Ck8vVuR9w4dX2UKGgGaAloD0MItoR80HNlckCUhpRSlGgVTRwBaBZHQKTzCZOSGJx1fZQoaAZoCWgPQwiiXYWUHzRtQJSGlFKUaBVNAgFoFkdApPMtYbKif3V9lChoBmgJaA9DCDJXBtWGhHFAlIaUUpRoFUvgaBZHQKTzSby6MBJ1fZQoaAZoCWgPQwhUc7nB0KlzQJSGlFKUaBVL/2gWR0Ck81xiw0O3dX2UKGgGaAloD0MIoRSt3EtKcECUhpRSlGgVTYwDaBZHQKTznNfw7T51fZQoaAZoCWgPQwjXicvxiuFxQJSGlFKUaBVNAAFoFkdApPOkEidJ8XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}