Upload 3 files
Browse filesThe Res-VMamba weight in paper https://arxiv.org/abs/2402.15761 , which was trained on CNFOOD-241-Chen.
- ckpt_epoch_166.pth +3 -0
- config.json +99 -0
- log_rank0.txt +1233 -0
ckpt_epoch_166.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:457b615d41c79698d8f2eafbe51959d8c1b5d53187605765d5f79558639c1ac3
|
3 |
+
size 711402283
|
config.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AMP_ENABLE: true
|
2 |
+
AMP_OPT_LEVEL: ''
|
3 |
+
AUG:
|
4 |
+
AUTO_AUGMENT: rand-m9-mstd0.5-inc1
|
5 |
+
COLOR_JITTER: 0.4
|
6 |
+
CUTMIX: 1.0
|
7 |
+
CUTMIX_MINMAX: null
|
8 |
+
MIXUP: 0.8
|
9 |
+
MIXUP_MODE: batch
|
10 |
+
MIXUP_PROB: 1.0
|
11 |
+
MIXUP_SWITCH_PROB: 0.5
|
12 |
+
RECOUNT: 1
|
13 |
+
REMODE: pixel
|
14 |
+
REPROB: 0.25
|
15 |
+
BASE:
|
16 |
+
- ''
|
17 |
+
DATA:
|
18 |
+
BATCH_SIZE: 128
|
19 |
+
CACHE_MODE: part
|
20 |
+
DATASET: imagenet
|
21 |
+
DATA_PATH: /home/public_3T/food_data/CNFOOD-241
|
22 |
+
IMG_SIZE: 224
|
23 |
+
INTERPOLATION: bicubic
|
24 |
+
MASK_PATCH_SIZE: 32
|
25 |
+
MASK_RATIO: 0.6
|
26 |
+
NUM_WORKERS: 8
|
27 |
+
PIN_MEMORY: true
|
28 |
+
ZIP_MODE: false
|
29 |
+
ENABLE_AMP: false
|
30 |
+
EVAL_MODE: false
|
31 |
+
FUSED_LAYERNORM: false
|
32 |
+
FUSED_WINDOW_PROCESS: false
|
33 |
+
LOCAL_RANK: 0
|
34 |
+
MODEL:
|
35 |
+
DROP_PATH_RATE: 0.3
|
36 |
+
DROP_RATE: 0.0
|
37 |
+
LABEL_SMOOTHING: 0.1
|
38 |
+
MMCKPT: false
|
39 |
+
NAME: vssm_small
|
40 |
+
NUM_CLASSES: 241
|
41 |
+
PRETRAINED: ./res_vmamba_cnf241_result_2/vssm_small/default/ckpt_epoch_12.pth
|
42 |
+
RESUME: ''
|
43 |
+
TYPE: vssm
|
44 |
+
VSSM:
|
45 |
+
DEPTHS:
|
46 |
+
- 2
|
47 |
+
- 2
|
48 |
+
- 27
|
49 |
+
- 2
|
50 |
+
DOWNSAMPLE: v1
|
51 |
+
DT_RANK: auto
|
52 |
+
D_STATE: 16
|
53 |
+
EMBED_DIM: 96
|
54 |
+
IN_CHANS: 3
|
55 |
+
MLP_RATIO: 0.0
|
56 |
+
PATCH_NORM: true
|
57 |
+
PATCH_SIZE: 4
|
58 |
+
SHARED_SSM: false
|
59 |
+
SOFTMAX: false
|
60 |
+
SSM_RATIO: 2.0
|
61 |
+
OUTPUT: ./res_vmamba_cnf241_result_best/vssm_small/default
|
62 |
+
PRINT_FREQ: 10
|
63 |
+
SAVE_FREQ: 1
|
64 |
+
SEED: 0
|
65 |
+
TAG: default
|
66 |
+
TEST:
|
67 |
+
CROP: true
|
68 |
+
SEQUENTIAL: false
|
69 |
+
SHUFFLE: false
|
70 |
+
THROUGHPUT_MODE: false
|
71 |
+
TRAIN:
|
72 |
+
ACCUMULATION_STEPS: 1
|
73 |
+
AUTO_RESUME: true
|
74 |
+
BASE_LR: 0.000125
|
75 |
+
CLIP_GRAD: 5.0
|
76 |
+
EPOCHS: 300
|
77 |
+
LAYER_DECAY: 1.0
|
78 |
+
LR_SCHEDULER:
|
79 |
+
DECAY_EPOCHS: 30
|
80 |
+
DECAY_RATE: 0.1
|
81 |
+
GAMMA: 0.1
|
82 |
+
MULTISTEPS: []
|
83 |
+
NAME: cosine
|
84 |
+
WARMUP_PREFIX: true
|
85 |
+
MIN_LR: 1.25e-06
|
86 |
+
MOE:
|
87 |
+
SAVE_MASTER: false
|
88 |
+
OPTIMIZER:
|
89 |
+
BETAS:
|
90 |
+
- 0.9
|
91 |
+
- 0.999
|
92 |
+
EPS: 1.0e-08
|
93 |
+
MOMENTUM: 0.9
|
94 |
+
NAME: adamw
|
95 |
+
START_EPOCH: 0
|
96 |
+
USE_CHECKPOINT: false
|
97 |
+
WARMUP_EPOCHS: 20
|
98 |
+
WARMUP_LR: 1.25e-07
|
99 |
+
WEIGHT_DECAY: 0.05
|
log_rank0.txt
ADDED
@@ -0,0 +1,1233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2024-02-22 17:55:19 vssm_small] (main.py 401): INFO Full config saved to ./res_vmamba_cnf241_result_best/vssm_small/default/config.json
|
2 |
+
[2024-02-22 17:55:19 vssm_small] (main.py 404): INFO AMP_ENABLE: true
|
3 |
+
AMP_OPT_LEVEL: ''
|
4 |
+
AUG:
|
5 |
+
AUTO_AUGMENT: rand-m9-mstd0.5-inc1
|
6 |
+
COLOR_JITTER: 0.4
|
7 |
+
CUTMIX: 1.0
|
8 |
+
CUTMIX_MINMAX: null
|
9 |
+
MIXUP: 0.8
|
10 |
+
MIXUP_MODE: batch
|
11 |
+
MIXUP_PROB: 1.0
|
12 |
+
MIXUP_SWITCH_PROB: 0.5
|
13 |
+
RECOUNT: 1
|
14 |
+
REMODE: pixel
|
15 |
+
REPROB: 0.25
|
16 |
+
BASE:
|
17 |
+
- ''
|
18 |
+
DATA:
|
19 |
+
BATCH_SIZE: 128
|
20 |
+
CACHE_MODE: part
|
21 |
+
DATASET: imagenet
|
22 |
+
DATA_PATH: /home/public_3T/food_data/CNFOOD-241
|
23 |
+
IMG_SIZE: 224
|
24 |
+
INTERPOLATION: bicubic
|
25 |
+
MASK_PATCH_SIZE: 32
|
26 |
+
MASK_RATIO: 0.6
|
27 |
+
NUM_WORKERS: 8
|
28 |
+
PIN_MEMORY: true
|
29 |
+
ZIP_MODE: false
|
30 |
+
ENABLE_AMP: false
|
31 |
+
EVAL_MODE: false
|
32 |
+
FUSED_LAYERNORM: false
|
33 |
+
FUSED_WINDOW_PROCESS: false
|
34 |
+
LOCAL_RANK: 0
|
35 |
+
MODEL:
|
36 |
+
DROP_PATH_RATE: 0.3
|
37 |
+
DROP_RATE: 0.0
|
38 |
+
LABEL_SMOOTHING: 0.1
|
39 |
+
MMCKPT: false
|
40 |
+
NAME: vssm_small
|
41 |
+
NUM_CLASSES: 241
|
42 |
+
PRETRAINED: ./res_vmamba_cnf241_result_2/vssm_small/default/ckpt_epoch_12.pth
|
43 |
+
RESUME: ''
|
44 |
+
TYPE: vssm
|
45 |
+
VSSM:
|
46 |
+
DEPTHS:
|
47 |
+
- 2
|
48 |
+
- 2
|
49 |
+
- 27
|
50 |
+
- 2
|
51 |
+
DOWNSAMPLE: v1
|
52 |
+
DT_RANK: auto
|
53 |
+
D_STATE: 16
|
54 |
+
EMBED_DIM: 96
|
55 |
+
IN_CHANS: 3
|
56 |
+
MLP_RATIO: 0.0
|
57 |
+
PATCH_NORM: true
|
58 |
+
PATCH_SIZE: 4
|
59 |
+
SHARED_SSM: false
|
60 |
+
SOFTMAX: false
|
61 |
+
SSM_RATIO: 2.0
|
62 |
+
OUTPUT: ./res_vmamba_cnf241_result_best/vssm_small/default
|
63 |
+
PRINT_FREQ: 10
|
64 |
+
SAVE_FREQ: 1
|
65 |
+
SEED: 0
|
66 |
+
TAG: default
|
67 |
+
TEST:
|
68 |
+
CROP: true
|
69 |
+
SEQUENTIAL: false
|
70 |
+
SHUFFLE: false
|
71 |
+
THROUGHPUT_MODE: false
|
72 |
+
TRAIN:
|
73 |
+
ACCUMULATION_STEPS: 1
|
74 |
+
AUTO_RESUME: true
|
75 |
+
BASE_LR: 0.000125
|
76 |
+
CLIP_GRAD: 5.0
|
77 |
+
EPOCHS: 300
|
78 |
+
LAYER_DECAY: 1.0
|
79 |
+
LR_SCHEDULER:
|
80 |
+
DECAY_EPOCHS: 30
|
81 |
+
DECAY_RATE: 0.1
|
82 |
+
GAMMA: 0.1
|
83 |
+
MULTISTEPS: []
|
84 |
+
NAME: cosine
|
85 |
+
WARMUP_PREFIX: true
|
86 |
+
MIN_LR: 1.25e-06
|
87 |
+
MOE:
|
88 |
+
SAVE_MASTER: false
|
89 |
+
OPTIMIZER:
|
90 |
+
BETAS:
|
91 |
+
- 0.9
|
92 |
+
- 0.999
|
93 |
+
EPS: 1.0e-08
|
94 |
+
MOMENTUM: 0.9
|
95 |
+
NAME: adamw
|
96 |
+
START_EPOCH: 0
|
97 |
+
USE_CHECKPOINT: false
|
98 |
+
WARMUP_EPOCHS: 20
|
99 |
+
WARMUP_LR: 1.25e-07
|
100 |
+
WEIGHT_DECAY: 0.05
|
101 |
+
|
102 |
+
[2024-02-22 17:55:19 vssm_small] (main.py 405): INFO {"cfg": "configs/vssm/vssm_small_224.yaml", "opts": null, "batch_size": 128, "data_path": "/home/public_3T/food_data/CNFOOD-241", "zip": false, "cache_mode": "part", "pretrained": "./res_vmamba_cnf241_result_2/vssm_small/default/ckpt_epoch_12.pth", "resume": null, "accumulation_steps": null, "use_checkpoint": false, "disable_amp": false, "amp_opt_level": null, "output": "./res_vmamba_cnf241_result_best", "tag": null, "eval": false, "throughput": false, "local_rank": 0, "fused_layernorm": false, "optim": null, "model_ema": true, "model_ema_decay": 0.9999, "model_ema_force_cpu": false}
|
103 |
+
[2024-02-22 17:55:20 vssm_small] (main.py 112): INFO Creating model:vssm/vssm_small
|
104 |
+
[2024-02-22 17:55:20 vssm_small] (main.py 118): INFO VSSM(
|
105 |
+
(patch_embed): Sequential(
|
106 |
+
(0): Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4))
|
107 |
+
(1): Permute()
|
108 |
+
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
109 |
+
)
|
110 |
+
(layers): ModuleList(
|
111 |
+
(0): Sequential(
|
112 |
+
(blocks): Sequential(
|
113 |
+
(0): VSSBlock(
|
114 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
115 |
+
(op): SS2D(
|
116 |
+
(out_norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(in_proj): Linear(in_features=96, out_features=384, bias=False)
|
118 |
+
(act): SiLU()
|
119 |
+
(conv2d): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
|
120 |
+
(out_proj): Linear(in_features=192, out_features=96, bias=False)
|
121 |
+
(dropout): Identity()
|
122 |
+
)
|
123 |
+
(drop_path): timm.DropPath(0.0)
|
124 |
+
)
|
125 |
+
(1): VSSBlock(
|
126 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
127 |
+
(op): SS2D(
|
128 |
+
(out_norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
129 |
+
(in_proj): Linear(in_features=96, out_features=384, bias=False)
|
130 |
+
(act): SiLU()
|
131 |
+
(conv2d): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
|
132 |
+
(out_proj): Linear(in_features=192, out_features=96, bias=False)
|
133 |
+
(dropout): Identity()
|
134 |
+
)
|
135 |
+
(drop_path): timm.DropPath(0.00937500037252903)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
(downsample): PatchMerging2D(
|
139 |
+
(reduction): Linear(in_features=384, out_features=192, bias=False)
|
140 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(1): Sequential(
|
144 |
+
(blocks): Sequential(
|
145 |
+
(0): VSSBlock(
|
146 |
+
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
147 |
+
(op): SS2D(
|
148 |
+
(out_norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(in_proj): Linear(in_features=192, out_features=768, bias=False)
|
150 |
+
(act): SiLU()
|
151 |
+
(conv2d): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
|
152 |
+
(out_proj): Linear(in_features=384, out_features=192, bias=False)
|
153 |
+
(dropout): Identity()
|
154 |
+
)
|
155 |
+
(drop_path): timm.DropPath(0.01875000074505806)
|
156 |
+
)
|
157 |
+
(1): VSSBlock(
|
158 |
+
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
159 |
+
(op): SS2D(
|
160 |
+
(out_norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
161 |
+
(in_proj): Linear(in_features=192, out_features=768, bias=False)
|
162 |
+
(act): SiLU()
|
163 |
+
(conv2d): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
|
164 |
+
(out_proj): Linear(in_features=384, out_features=192, bias=False)
|
165 |
+
(dropout): Identity()
|
166 |
+
)
|
167 |
+
(drop_path): timm.DropPath(0.02812500111758709)
|
168 |
+
)
|
169 |
+
)
|
170 |
+
(downsample): PatchMerging2D(
|
171 |
+
(reduction): Linear(in_features=768, out_features=384, bias=False)
|
172 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(2): Sequential(
|
176 |
+
(blocks): Sequential(
|
177 |
+
(0): VSSBlock(
|
178 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
179 |
+
(op): SS2D(
|
180 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
181 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
182 |
+
(act): SiLU()
|
183 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
184 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
185 |
+
(dropout): Identity()
|
186 |
+
)
|
187 |
+
(drop_path): timm.DropPath(0.03750000149011612)
|
188 |
+
)
|
189 |
+
(1): VSSBlock(
|
190 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
191 |
+
(op): SS2D(
|
192 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
193 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
194 |
+
(act): SiLU()
|
195 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
196 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
197 |
+
(dropout): Identity()
|
198 |
+
)
|
199 |
+
(drop_path): timm.DropPath(0.046875)
|
200 |
+
)
|
201 |
+
(2): VSSBlock(
|
202 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
203 |
+
(op): SS2D(
|
204 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
205 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
206 |
+
(act): SiLU()
|
207 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
208 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
209 |
+
(dropout): Identity()
|
210 |
+
)
|
211 |
+
(drop_path): timm.DropPath(0.05625000223517418)
|
212 |
+
)
|
213 |
+
(3): VSSBlock(
|
214 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
215 |
+
(op): SS2D(
|
216 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
217 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
218 |
+
(act): SiLU()
|
219 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
220 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
221 |
+
(dropout): Identity()
|
222 |
+
)
|
223 |
+
(drop_path): timm.DropPath(0.06562500447034836)
|
224 |
+
)
|
225 |
+
(4): VSSBlock(
|
226 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
227 |
+
(op): SS2D(
|
228 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
229 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
230 |
+
(act): SiLU()
|
231 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
232 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
233 |
+
(dropout): Identity()
|
234 |
+
)
|
235 |
+
(drop_path): timm.DropPath(0.07500000298023224)
|
236 |
+
)
|
237 |
+
(5): VSSBlock(
|
238 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
239 |
+
(op): SS2D(
|
240 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
242 |
+
(act): SiLU()
|
243 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
244 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
245 |
+
(dropout): Identity()
|
246 |
+
)
|
247 |
+
(drop_path): timm.DropPath(0.08437500149011612)
|
248 |
+
)
|
249 |
+
(6): VSSBlock(
|
250 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
251 |
+
(op): SS2D(
|
252 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
253 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
254 |
+
(act): SiLU()
|
255 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
256 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
257 |
+
(dropout): Identity()
|
258 |
+
)
|
259 |
+
(drop_path): timm.DropPath(0.09375)
|
260 |
+
)
|
261 |
+
(7): VSSBlock(
|
262 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
263 |
+
(op): SS2D(
|
264 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
265 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
266 |
+
(act): SiLU()
|
267 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
268 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
269 |
+
(dropout): Identity()
|
270 |
+
)
|
271 |
+
(drop_path): timm.DropPath(0.10312500596046448)
|
272 |
+
)
|
273 |
+
(8): VSSBlock(
|
274 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
275 |
+
(op): SS2D(
|
276 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
277 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
278 |
+
(act): SiLU()
|
279 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
280 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
281 |
+
(dropout): Identity()
|
282 |
+
)
|
283 |
+
(drop_path): timm.DropPath(0.11250000447034836)
|
284 |
+
)
|
285 |
+
(9): VSSBlock(
|
286 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(op): SS2D(
|
288 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
289 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
290 |
+
(act): SiLU()
|
291 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
292 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
293 |
+
(dropout): Identity()
|
294 |
+
)
|
295 |
+
(drop_path): timm.DropPath(0.12187500298023224)
|
296 |
+
)
|
297 |
+
(10): VSSBlock(
|
298 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
299 |
+
(op): SS2D(
|
300 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
301 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
302 |
+
(act): SiLU()
|
303 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
304 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
305 |
+
(dropout): Identity()
|
306 |
+
)
|
307 |
+
(drop_path): timm.DropPath(0.13125000894069672)
|
308 |
+
)
|
309 |
+
(11): VSSBlock(
|
310 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
311 |
+
(op): SS2D(
|
312 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
313 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
314 |
+
(act): SiLU()
|
315 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
316 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
317 |
+
(dropout): Identity()
|
318 |
+
)
|
319 |
+
(drop_path): timm.DropPath(0.140625)
|
320 |
+
)
|
321 |
+
(12): VSSBlock(
|
322 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
323 |
+
(op): SS2D(
|
324 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
325 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
326 |
+
(act): SiLU()
|
327 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
328 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
329 |
+
(dropout): Identity()
|
330 |
+
)
|
331 |
+
(drop_path): timm.DropPath(0.15000000596046448)
|
332 |
+
)
|
333 |
+
(13): VSSBlock(
|
334 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
335 |
+
(op): SS2D(
|
336 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
337 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
338 |
+
(act): SiLU()
|
339 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
340 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
341 |
+
(dropout): Identity()
|
342 |
+
)
|
343 |
+
(drop_path): timm.DropPath(0.15937501192092896)
|
344 |
+
)
|
345 |
+
(14): VSSBlock(
|
346 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(op): SS2D(
|
348 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
349 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
350 |
+
(act): SiLU()
|
351 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
352 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
353 |
+
(dropout): Identity()
|
354 |
+
)
|
355 |
+
(drop_path): timm.DropPath(0.16875000298023224)
|
356 |
+
)
|
357 |
+
(15): VSSBlock(
|
358 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
359 |
+
(op): SS2D(
|
360 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
361 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
362 |
+
(act): SiLU()
|
363 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
364 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
365 |
+
(dropout): Identity()
|
366 |
+
)
|
367 |
+
(drop_path): timm.DropPath(0.17812500894069672)
|
368 |
+
)
|
369 |
+
(16): VSSBlock(
|
370 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
371 |
+
(op): SS2D(
|
372 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
373 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
374 |
+
(act): SiLU()
|
375 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
376 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
377 |
+
(dropout): Identity()
|
378 |
+
)
|
379 |
+
(drop_path): timm.DropPath(0.1875)
|
380 |
+
)
|
381 |
+
(17): VSSBlock(
|
382 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
383 |
+
(op): SS2D(
|
384 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
385 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
386 |
+
(act): SiLU()
|
387 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
388 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
389 |
+
(dropout): Identity()
|
390 |
+
)
|
391 |
+
(drop_path): timm.DropPath(0.19687500596046448)
|
392 |
+
)
|
393 |
+
(18): VSSBlock(
|
394 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
395 |
+
(op): SS2D(
|
396 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
397 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
398 |
+
(act): SiLU()
|
399 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
400 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
401 |
+
(dropout): Identity()
|
402 |
+
)
|
403 |
+
(drop_path): timm.DropPath(0.20625001192092896)
|
404 |
+
)
|
405 |
+
(19): VSSBlock(
|
406 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
407 |
+
(op): SS2D(
|
408 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
409 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
410 |
+
(act): SiLU()
|
411 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
412 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
413 |
+
(dropout): Identity()
|
414 |
+
)
|
415 |
+
(drop_path): timm.DropPath(0.21562501788139343)
|
416 |
+
)
|
417 |
+
(20): VSSBlock(
|
418 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
419 |
+
(op): SS2D(
|
420 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
421 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
422 |
+
(act): SiLU()
|
423 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
424 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
425 |
+
(dropout): Identity()
|
426 |
+
)
|
427 |
+
(drop_path): timm.DropPath(0.22500000894069672)
|
428 |
+
)
|
429 |
+
(21): VSSBlock(
|
430 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
431 |
+
(op): SS2D(
|
432 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
433 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
434 |
+
(act): SiLU()
|
435 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
436 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
437 |
+
(dropout): Identity()
|
438 |
+
)
|
439 |
+
(drop_path): timm.DropPath(0.2343750149011612)
|
440 |
+
)
|
441 |
+
(22): VSSBlock(
|
442 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
443 |
+
(op): SS2D(
|
444 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
445 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
446 |
+
(act): SiLU()
|
447 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
448 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
449 |
+
(dropout): Identity()
|
450 |
+
)
|
451 |
+
(drop_path): timm.DropPath(0.24375000596046448)
|
452 |
+
)
|
453 |
+
(23): VSSBlock(
|
454 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
455 |
+
(op): SS2D(
|
456 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
457 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
458 |
+
(act): SiLU()
|
459 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
460 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
461 |
+
(dropout): Identity()
|
462 |
+
)
|
463 |
+
(drop_path): timm.DropPath(0.25312501192092896)
|
464 |
+
)
|
465 |
+
(24): VSSBlock(
|
466 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
467 |
+
(op): SS2D(
|
468 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
469 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
470 |
+
(act): SiLU()
|
471 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
472 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
473 |
+
(dropout): Identity()
|
474 |
+
)
|
475 |
+
(drop_path): timm.DropPath(0.26250001788139343)
|
476 |
+
)
|
477 |
+
(25): VSSBlock(
|
478 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
479 |
+
(op): SS2D(
|
480 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
481 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
482 |
+
(act): SiLU()
|
483 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
484 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
485 |
+
(dropout): Identity()
|
486 |
+
)
|
487 |
+
(drop_path): timm.DropPath(0.2718750238418579)
|
488 |
+
)
|
489 |
+
(26): VSSBlock(
|
490 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
491 |
+
(op): SS2D(
|
492 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
493 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
494 |
+
(act): SiLU()
|
495 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
496 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
497 |
+
(dropout): Identity()
|
498 |
+
)
|
499 |
+
(drop_path): timm.DropPath(0.28125)
|
500 |
+
)
|
501 |
+
)
|
502 |
+
(downsample): PatchMerging2D(
|
503 |
+
(reduction): Linear(in_features=1536, out_features=768, bias=False)
|
504 |
+
(norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
505 |
+
)
|
506 |
+
)
|
507 |
+
(3): Sequential(
|
508 |
+
(blocks): Sequential(
|
509 |
+
(0): VSSBlock(
|
510 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
511 |
+
(op): SS2D(
|
512 |
+
(out_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
513 |
+
(in_proj): Linear(in_features=768, out_features=3072, bias=False)
|
514 |
+
(act): SiLU()
|
515 |
+
(conv2d): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536)
|
516 |
+
(out_proj): Linear(in_features=1536, out_features=768, bias=False)
|
517 |
+
(dropout): Identity()
|
518 |
+
)
|
519 |
+
(drop_path): timm.DropPath(0.2906250059604645)
|
520 |
+
)
|
521 |
+
(1): VSSBlock(
|
522 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
523 |
+
(op): SS2D(
|
524 |
+
(out_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
525 |
+
(in_proj): Linear(in_features=768, out_features=3072, bias=False)
|
526 |
+
(act): SiLU()
|
527 |
+
(conv2d): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536)
|
528 |
+
(out_proj): Linear(in_features=1536, out_features=768, bias=False)
|
529 |
+
(dropout): Identity()
|
530 |
+
)
|
531 |
+
(drop_path): timm.DropPath(0.30000001192092896)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(downsample): Identity()
|
535 |
+
)
|
536 |
+
)
|
537 |
+
(classifier): Sequential(
|
538 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
539 |
+
(permute): Permute()
|
540 |
+
(avgpool): AdaptiveAvgPool2d(output_size=1)
|
541 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
542 |
+
(head): Linear(in_features=768, out_features=1000, bias=True)
|
543 |
+
)
|
544 |
+
)
|
545 |
+
[2024-02-22 17:55:20 vssm_small] (main.py 120): INFO number of params: 44417416
|
546 |
+
[2024-02-22 17:55:22 vssm_small] (main.py 123): INFO number of GFLOPs: 11.231522784
|
547 |
+
[2024-02-22 17:55:22 vssm_small] (main.py 167): INFO auto resuming from ./res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth
|
548 |
+
[2024-02-22 17:55:22 vssm_small] (utils.py 18): INFO ==============> Resuming form ./res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth....................
|
549 |
+
[2024-02-22 17:55:23 vssm_small] (utils.py 27): INFO resuming model: <All keys matched successfully>
|
550 |
+
[2024-02-22 17:55:23 vssm_small] (utils.py 34): INFO resuming model_ema: <All keys matched successfully>
|
551 |
+
[2024-02-22 17:55:24 vssm_small] (utils.py 48): INFO => loaded successfully './res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth' (epoch 166)
|
552 |
+
[2024-02-22 17:55:34 vssm_small] (main.py 324): INFO Test: [0/402] Time 10.582 (10.582) Loss 0.4614 (0.4614) Acc@1 89.844 (89.844) Acc@5 97.656 (97.656) Mem 7155MB
|
553 |
+
[2024-02-22 17:55:39 vssm_small] (main.py 324): INFO Test: [10/402] Time 0.483 (1.401) Loss 1.1680 (0.9504) Acc@1 76.562 (80.114) Acc@5 92.188 (94.105) Mem 7155MB
|
554 |
+
[2024-02-22 17:55:44 vssm_small] (main.py 324): INFO Test: [20/402] Time 0.482 (0.964) Loss 1.6357 (0.9252) Acc@1 52.344 (78.720) Acc@5 92.188 (95.164) Mem 7155MB
|
555 |
+
[2024-02-22 17:55:49 vssm_small] (main.py 324): INFO Test: [30/402] Time 0.483 (0.809) Loss 0.9429 (0.9577) Acc@1 76.562 (77.848) Acc@5 98.438 (95.237) Mem 7155MB
|
556 |
+
[2024-02-22 17:55:53 vssm_small] (main.py 324): INFO Test: [40/402] Time 0.483 (0.729) Loss 1.0166 (0.9836) Acc@1 72.656 (76.791) Acc@5 96.875 (95.560) Mem 7155MB
|
557 |
+
[2024-02-22 17:55:58 vssm_small] (main.py 324): INFO Test: [50/402] Time 0.483 (0.681) Loss 0.6353 (0.9501) Acc@1 83.594 (77.788) Acc@5 97.656 (95.527) Mem 7155MB
|
558 |
+
[2024-02-22 17:56:03 vssm_small] (main.py 324): INFO Test: [60/402] Time 0.482 (0.648) Loss 0.7671 (0.9817) Acc@1 80.469 (77.011) Acc@5 96.875 (95.197) Mem 7155MB
|
559 |
+
[2024-02-22 17:56:08 vssm_small] (main.py 324): INFO Test: [70/402] Time 0.482 (0.625) Loss 0.8667 (0.9259) Acc@1 77.344 (78.444) Acc@5 96.094 (95.478) Mem 7155MB
|
560 |
+
[2024-02-22 17:56:13 vssm_small] (main.py 324): INFO Test: [80/402] Time 0.483 (0.607) Loss 0.4990 (0.9246) Acc@1 88.281 (78.511) Acc@5 99.219 (95.515) Mem 7155MB
|
561 |
+
[2024-02-22 17:56:18 vssm_small] (main.py 324): INFO Test: [90/402] Time 0.483 (0.594) Loss 0.3621 (0.8928) Acc@1 92.188 (79.327) Acc@5 100.000 (95.639) Mem 7155MB
|
562 |
+
[2024-02-22 17:56:22 vssm_small] (main.py 324): INFO Test: [100/402] Time 0.482 (0.583) Loss 1.1924 (0.9116) Acc@1 78.125 (79.038) Acc@5 90.625 (95.359) Mem 7155MB
|
563 |
+
[2024-02-22 17:56:27 vssm_small] (main.py 324): INFO Test: [110/402] Time 0.483 (0.574) Loss 0.4204 (0.9173) Acc@1 85.938 (78.899) Acc@5 99.219 (95.341) Mem 7155MB
|
564 |
+
[2024-02-22 17:56:32 vssm_small] (main.py 324): INFO Test: [120/402] Time 0.483 (0.566) Loss 2.3027 (0.9299) Acc@1 46.094 (78.622) Acc@5 83.594 (95.274) Mem 7155MB
|
565 |
+
[2024-02-22 17:56:37 vssm_small] (main.py 324): INFO Test: [130/402] Time 0.482 (0.560) Loss 0.4097 (0.9233) Acc@1 91.406 (78.715) Acc@5 99.219 (95.366) Mem 7155MB
|
566 |
+
[2024-02-22 17:56:42 vssm_small] (main.py 324): INFO Test: [140/402] Time 0.483 (0.554) Loss 2.3652 (0.9762) Acc@1 47.656 (77.543) Acc@5 75.781 (94.891) Mem 7155MB
|
567 |
+
[2024-02-22 17:56:47 vssm_small] (main.py 324): INFO Test: [150/402] Time 0.482 (0.549) Loss 0.9092 (0.9862) Acc@1 78.906 (77.266) Acc@5 93.750 (94.868) Mem 7155MB
|
568 |
+
[2024-02-22 17:56:51 vssm_small] (main.py 324): INFO Test: [160/402] Time 0.482 (0.545) Loss 1.4434 (0.9815) Acc@1 61.719 (77.300) Acc@5 93.750 (94.978) Mem 7155MB
|
569 |
+
[2024-02-22 17:56:56 vssm_small] (main.py 324): INFO Test: [170/402] Time 0.483 (0.542) Loss 0.6587 (0.9758) Acc@1 89.062 (77.421) Acc@5 94.531 (95.006) Mem 7155MB
|
570 |
+
[2024-02-22 17:57:01 vssm_small] (main.py 324): INFO Test: [180/402] Time 0.482 (0.538) Loss 1.8477 (0.9902) Acc@1 53.125 (77.175) Acc@5 93.750 (94.864) Mem 7155MB
|
571 |
+
[2024-02-22 17:57:06 vssm_small] (main.py 324): INFO Test: [190/402] Time 0.483 (0.535) Loss 0.4958 (0.9845) Acc@1 89.844 (77.356) Acc@5 96.875 (94.818) Mem 7155MB
|
572 |
+
[2024-02-22 17:57:11 vssm_small] (main.py 324): INFO Test: [200/402] Time 0.482 (0.533) Loss 0.3074 (0.9707) Acc@1 95.312 (77.697) Acc@5 97.656 (94.916) Mem 7155MB
|
573 |
+
[2024-02-22 17:57:16 vssm_small] (main.py 324): INFO Test: [210/402] Time 0.483 (0.530) Loss 0.5928 (0.9563) Acc@1 83.594 (78.058) Acc@5 99.219 (95.016) Mem 7155MB
|
574 |
+
[2024-02-22 17:57:20 vssm_small] (main.py 324): INFO Test: [220/402] Time 0.482 (0.528) Loss 1.1055 (0.9381) Acc@1 76.562 (78.450) Acc@5 92.969 (95.178) Mem 7155MB
|
575 |
+
[2024-02-22 17:57:25 vssm_small] (main.py 324): INFO Test: [230/402] Time 0.482 (0.526) Loss 2.1230 (0.9502) Acc@1 60.156 (78.436) Acc@5 78.906 (94.913) Mem 7155MB
|
576 |
+
[2024-02-22 17:57:30 vssm_small] (main.py 324): INFO Test: [240/402] Time 0.483 (0.524) Loss 1.1201 (0.9431) Acc@1 67.188 (78.618) Acc@5 98.438 (94.972) Mem 7155MB
|
577 |
+
[2024-02-22 17:57:35 vssm_small] (main.py 324): INFO Test: [250/402] Time 0.483 (0.523) Loss 1.8711 (0.9650) Acc@1 53.906 (78.019) Acc@5 95.312 (94.933) Mem 7155MB
|
578 |
+
[2024-02-22 17:57:40 vssm_small] (main.py 324): INFO Test: [260/402] Time 0.482 (0.521) Loss 0.9282 (0.9637) Acc@1 76.562 (78.023) Acc@5 99.219 (94.983) Mem 7155MB
|
579 |
+
[2024-02-22 17:57:44 vssm_small] (main.py 324): INFO Test: [270/402] Time 0.483 (0.520) Loss 1.1191 (0.9527) Acc@1 68.750 (78.269) Acc@5 94.531 (95.056) Mem 7155MB
|
580 |
+
[2024-02-22 17:57:49 vssm_small] (main.py 324): INFO Test: [280/402] Time 0.483 (0.519) Loss 2.3047 (0.9652) Acc@1 19.531 (77.755) Acc@5 92.188 (95.032) Mem 7155MB
|
581 |
+
[2024-02-22 17:57:54 vssm_small] (main.py 324): INFO Test: [290/402] Time 0.482 (0.517) Loss 0.8774 (0.9767) Acc@1 80.469 (77.489) Acc@5 93.750 (94.912) Mem 7155MB
|
582 |
+
[2024-02-22 17:57:59 vssm_small] (main.py 324): INFO Test: [300/402] Time 0.483 (0.516) Loss 1.0645 (0.9802) Acc@1 80.469 (77.512) Acc@5 92.188 (94.817) Mem 7155MB
|
583 |
+
[2024-02-22 17:58:04 vssm_small] (main.py 324): INFO Test: [310/402] Time 0.483 (0.515) Loss 1.0410 (0.9764) Acc@1 79.688 (77.462) Acc@5 96.094 (94.903) Mem 7155MB
|
584 |
+
[2024-02-22 17:58:09 vssm_small] (main.py 324): INFO Test: [320/402] Time 0.483 (0.514) Loss 1.0859 (0.9653) Acc@1 76.562 (77.743) Acc@5 89.844 (94.960) Mem 7155MB
|
585 |
+
[2024-02-22 17:58:13 vssm_small] (main.py 324): INFO Test: [330/402] Time 0.483 (0.513) Loss 1.0596 (0.9657) Acc@1 73.438 (77.714) Acc@5 95.312 (95.001) Mem 7155MB
|
586 |
+
[2024-02-22 17:58:18 vssm_small] (main.py 324): INFO Test: [340/402] Time 0.482 (0.512) Loss 0.3967 (0.9663) Acc@1 90.625 (77.699) Acc@5 100.000 (95.028) Mem 7155MB
|
587 |
+
[2024-02-22 17:58:23 vssm_small] (main.py 324): INFO Test: [350/402] Time 0.483 (0.511) Loss 1.2148 (0.9637) Acc@1 68.750 (77.773) Acc@5 96.875 (95.050) Mem 7155MB
|
588 |
+
[2024-02-22 17:58:28 vssm_small] (main.py 324): INFO Test: [360/402] Time 0.483 (0.511) Loss 0.9941 (0.9685) Acc@1 79.688 (77.571) Acc@5 95.312 (95.074) Mem 7155MB
|
589 |
+
[2024-02-22 17:58:33 vssm_small] (main.py 324): INFO Test: [370/402] Time 0.482 (0.510) Loss 0.9004 (0.9689) Acc@1 83.594 (77.552) Acc@5 94.531 (95.081) Mem 7155MB
|
590 |
+
[2024-02-22 17:58:38 vssm_small] (main.py 324): INFO Test: [380/402] Time 0.482 (0.509) Loss 0.7358 (0.9634) Acc@1 82.812 (77.690) Acc@5 97.656 (95.114) Mem 7155MB
|
591 |
+
[2024-02-22 17:58:42 vssm_small] (main.py 324): INFO Test: [390/402] Time 0.482 (0.508) Loss 1.0068 (0.9605) Acc@1 77.344 (77.807) Acc@5 94.531 (95.113) Mem 7155MB
|
592 |
+
[2024-02-22 17:58:47 vssm_small] (main.py 324): INFO Test: [400/402] Time 0.482 (0.508) Loss 0.2834 (0.9484) Acc@1 95.312 (78.141) Acc@5 99.219 (95.184) Mem 7155MB
|
593 |
+
[2024-02-22 17:58:48 vssm_small] (main.py 331): INFO * Acc@1 78.150 Acc@5 95.186
|
594 |
+
[2024-02-22 17:58:48 vssm_small] (main.py 174): INFO Accuracy of the network on the 51354 test images: 78.1%
|
595 |
+
[2024-02-22 17:58:57 vssm_small] (main.py 324): INFO Test: [0/402] Time 8.919 (8.919) Loss 0.4504 (0.4504) Acc@1 91.406 (91.406) Acc@5 98.438 (98.438) Mem 7155MB
|
596 |
+
[2024-02-22 17:59:02 vssm_small] (main.py 324): INFO Test: [10/402] Time 0.483 (1.250) Loss 0.9731 (0.8429) Acc@1 83.594 (82.599) Acc@5 91.406 (94.957) Mem 7155MB
|
597 |
+
[2024-02-22 17:59:07 vssm_small] (main.py 324): INFO Test: [20/402] Time 0.483 (0.884) Loss 1.3154 (0.8200) Acc@1 60.938 (81.510) Acc@5 94.531 (95.573) Mem 7155MB
|
598 |
+
[2024-02-22 17:59:12 vssm_small] (main.py 324): INFO Test: [30/402] Time 0.483 (0.755) Loss 0.8833 (0.8867) Acc@1 76.562 (79.410) Acc@5 96.875 (95.514) Mem 7155MB
|
599 |
+
[2024-02-22 17:59:16 vssm_small] (main.py 324): INFO Test: [40/402] Time 0.482 (0.688) Loss 0.8809 (0.8790) Acc@1 74.219 (79.002) Acc@5 98.438 (95.922) Mem 7155MB
|
600 |
+
[2024-02-22 17:59:21 vssm_small] (main.py 324): INFO Test: [50/402] Time 0.483 (0.648) Loss 0.5254 (0.8631) Acc@1 89.062 (79.611) Acc@5 97.656 (95.956) Mem 7155MB
|
601 |
+
[2024-02-22 17:59:26 vssm_small] (main.py 324): INFO Test: [60/402] Time 0.483 (0.621) Loss 0.6147 (0.8904) Acc@1 85.156 (78.855) Acc@5 97.656 (95.671) Mem 7155MB
|
602 |
+
[2024-02-22 17:59:31 vssm_small] (main.py 324): INFO Test: [70/402] Time 0.483 (0.601) Loss 1.0029 (0.8448) Acc@1 77.344 (80.095) Acc@5 96.875 (96.006) Mem 7155MB
|
603 |
+
[2024-02-22 17:59:36 vssm_small] (main.py 324): INFO Test: [80/402] Time 0.483 (0.587) Loss 0.5259 (0.8449) Acc@1 85.156 (80.102) Acc@5 98.438 (96.007) Mem 7155MB
|
604 |
+
[2024-02-22 17:59:41 vssm_small] (main.py 324): INFO Test: [90/402] Time 0.483 (0.575) Loss 0.2947 (0.8155) Acc@1 94.531 (80.872) Acc@5 100.000 (96.162) Mem 7155MB
|
605 |
+
[2024-02-22 17:59:45 vssm_small] (main.py 324): INFO Test: [100/402] Time 0.483 (0.566) Loss 1.2002 (0.8335) Acc@1 76.562 (80.554) Acc@5 92.188 (95.978) Mem 7155MB
|
606 |
+
[2024-02-22 17:59:50 vssm_small] (main.py 324): INFO Test: [110/402] Time 0.483 (0.559) Loss 0.4329 (0.8417) Acc@1 86.719 (80.342) Acc@5 100.000 (95.967) Mem 7155MB
|
607 |
+
[2024-02-22 17:59:55 vssm_small] (main.py 324): INFO Test: [120/402] Time 0.483 (0.552) Loss 2.2422 (0.8554) Acc@1 47.656 (80.139) Acc@5 84.375 (95.874) Mem 7155MB
|
608 |
+
[2024-02-22 18:00:00 vssm_small] (main.py 324): INFO Test: [130/402] Time 0.483 (0.547) Loss 0.4048 (0.8500) Acc@1 90.625 (80.200) Acc@5 99.219 (95.974) Mem 7155MB
|
609 |
+
[2024-02-22 18:00:05 vssm_small] (main.py 324): INFO Test: [140/402] Time 0.483 (0.543) Loss 2.1191 (0.9016) Acc@1 52.344 (79.039) Acc@5 83.594 (95.495) Mem 7155MB
|
610 |
+
[2024-02-22 18:00:09 vssm_small] (main.py 324): INFO Test: [150/402] Time 0.483 (0.539) Loss 0.8765 (0.9130) Acc@1 78.906 (78.715) Acc@5 94.531 (95.442) Mem 7155MB
|
611 |
+
[2024-02-22 18:00:14 vssm_small] (main.py 324): INFO Test: [160/402] Time 0.483 (0.535) Loss 1.3135 (0.9056) Acc@1 67.969 (78.872) Acc@5 95.312 (95.541) Mem 7155MB
|
612 |
+
[2024-02-22 18:00:19 vssm_small] (main.py 324): INFO Test: [170/402] Time 0.483 (0.532) Loss 0.5923 (0.8953) Acc@1 90.625 (79.094) Acc@5 95.312 (95.591) Mem 7155MB
|
613 |
+
[2024-02-22 18:00:24 vssm_small] (main.py 324): INFO Test: [180/402] Time 0.483 (0.529) Loss 1.8027 (0.9146) Acc@1 53.125 (78.699) Acc@5 94.531 (95.395) Mem 7155MB
|
614 |
+
[2024-02-22 18:00:29 vssm_small] (main.py 324): INFO Test: [190/402] Time 0.483 (0.527) Loss 0.4436 (0.9099) Acc@1 91.406 (78.865) Acc@5 97.656 (95.357) Mem 7155MB
|
615 |
+
[2024-02-22 18:00:34 vssm_small] (main.py 324): INFO Test: [200/402] Time 0.483 (0.525) Loss 0.2937 (0.8963) Acc@1 96.875 (79.190) Acc@5 98.438 (95.464) Mem 7155MB
|
616 |
+
[2024-02-22 18:00:38 vssm_small] (main.py 324): INFO Test: [210/402] Time 0.483 (0.523) Loss 0.5981 (0.8853) Acc@1 84.375 (79.465) Acc@5 98.438 (95.542) Mem 7155MB
|
617 |
+
[2024-02-22 18:00:43 vssm_small] (main.py 324): INFO Test: [220/402] Time 0.483 (0.521) Loss 1.0889 (0.8694) Acc@1 77.344 (79.811) Acc@5 92.969 (95.680) Mem 7155MB
|
618 |
+
[2024-02-22 18:00:48 vssm_small] (main.py 324): INFO Test: [230/402] Time 0.483 (0.519) Loss 1.9727 (0.8842) Acc@1 60.156 (79.708) Acc@5 78.906 (95.394) Mem 7155MB
|
619 |
+
[2024-02-22 18:00:53 vssm_small] (main.py 324): INFO Test: [240/402] Time 0.482 (0.518) Loss 1.2422 (0.8778) Acc@1 60.156 (79.853) Acc@5 98.438 (95.445) Mem 7155MB
|
620 |
+
[2024-02-22 18:00:58 vssm_small] (main.py 324): INFO Test: [250/402] Time 0.483 (0.516) Loss 1.4551 (0.8951) Acc@1 60.938 (79.358) Acc@5 95.312 (95.412) Mem 7155MB
|
621 |
+
[2024-02-22 18:01:03 vssm_small] (main.py 324): INFO Test: [260/402] Time 0.483 (0.515) Loss 0.8667 (0.8933) Acc@1 78.906 (79.331) Acc@5 98.438 (95.489) Mem 7155MB
|
622 |
+
[2024-02-22 18:01:07 vssm_small] (main.py 324): INFO Test: [270/402] Time 0.482 (0.514) Loss 0.9072 (0.8828) Acc@1 77.344 (79.578) Acc@5 96.094 (95.543) Mem 7155MB
|
623 |
+
[2024-02-22 18:01:12 vssm_small] (main.py 324): INFO Test: [280/402] Time 0.483 (0.513) Loss 2.3594 (0.8950) Acc@1 19.531 (79.101) Acc@5 92.188 (95.527) Mem 7155MB
|
624 |
+
[2024-02-22 18:01:17 vssm_small] (main.py 324): INFO Test: [290/402] Time 0.483 (0.512) Loss 0.8384 (0.9058) Acc@1 82.031 (78.845) Acc@5 95.312 (95.455) Mem 7155MB
|
625 |
+
[2024-02-22 18:01:22 vssm_small] (main.py 324): INFO Test: [300/402] Time 0.482 (0.511) Loss 0.9658 (0.9067) Acc@1 81.250 (78.914) Acc@5 93.750 (95.396) Mem 7155MB
|
626 |
+
[2024-02-22 18:01:27 vssm_small] (main.py 324): INFO Test: [310/402] Time 0.483 (0.510) Loss 1.0488 (0.9032) Acc@1 81.250 (78.861) Acc@5 96.094 (95.481) Mem 7155MB
|
627 |
+
[2024-02-22 18:01:32 vssm_small] (main.py 324): INFO Test: [320/402] Time 0.483 (0.509) Loss 0.8892 (0.8902) Acc@1 82.031 (79.193) Acc@5 92.188 (95.536) Mem 7155MB
|
628 |
+
[2024-02-22 18:01:36 vssm_small] (main.py 324): INFO Test: [330/402] Time 0.483 (0.508) Loss 0.8677 (0.8919) Acc@1 79.688 (79.145) Acc@5 97.656 (95.567) Mem 7155MB
|
629 |
+
[2024-02-22 18:01:41 vssm_small] (main.py 324): INFO Test: [340/402] Time 0.483 (0.507) Loss 0.3433 (0.8911) Acc@1 89.844 (79.138) Acc@5 100.000 (95.597) Mem 7155MB
|
630 |
+
[2024-02-22 18:01:46 vssm_small] (main.py 324): INFO Test: [350/402] Time 0.483 (0.507) Loss 0.8315 (0.8892) Acc@1 78.906 (79.200) Acc@5 98.438 (95.620) Mem 7155MB
|
631 |
+
[2024-02-22 18:01:51 vssm_small] (main.py 324): INFO Test: [360/402] Time 0.483 (0.506) Loss 0.9419 (0.8932) Acc@1 78.125 (79.006) Acc@5 96.094 (95.654) Mem 7155MB
|
632 |
+
[2024-02-22 18:01:56 vssm_small] (main.py 324): INFO Test: [370/402] Time 0.483 (0.505) Loss 0.8735 (0.8931) Acc@1 82.031 (78.997) Acc@5 94.531 (95.652) Mem 7155MB
|
633 |
+
[2024-02-22 18:02:01 vssm_small] (main.py 324): INFO Test: [380/402] Time 0.483 (0.505) Loss 0.7627 (0.8883) Acc@1 82.031 (79.138) Acc@5 97.656 (95.682) Mem 7155MB
|
634 |
+
[2024-02-22 18:02:05 vssm_small] (main.py 324): INFO Test: [390/402] Time 0.483 (0.504) Loss 0.9995 (0.8870) Acc@1 78.125 (79.218) Acc@5 93.750 (95.666) Mem 7155MB
|
635 |
+
[2024-02-22 18:02:10 vssm_small] (main.py 324): INFO Test: [400/402] Time 0.482 (0.504) Loss 0.2445 (0.8753) Acc@1 96.094 (79.534) Acc@5 99.219 (95.722) Mem 7155MB
|
636 |
+
[2024-02-22 18:02:11 vssm_small] (main.py 331): INFO * Acc@1 79.544 Acc@5 95.724
|
637 |
+
[2024-02-22 18:02:11 vssm_small] (main.py 177): INFO Accuracy of the network ema on the 51354 test images: 79.5%
|
638 |
+
[2024-02-22 18:02:11 vssm_small] (main.py 196): INFO Start training
|
639 |
+
[2024-02-22 18:02:22 vssm_small] (main.py 274): INFO Train: [167/300][0/933] eta 2:59:28 lr 0.000058 wd 0.0500 time 11.5413 (11.5413) data time 8.5294 (8.5294) loss 3.2837 (3.2837) grad_norm 7.2747 (7.2747) loss_scale 32768.0000 (32768.0000) mem 50097MB
|
640 |
+
[2024-02-22 18:02:38 vssm_small] (main.py 274): INFO Train: [167/300][10/933] eta 0:38:04 lr 0.000058 wd 0.0500 time 1.5679 (2.4753) data time 0.0005 (0.7759) loss 2.0028 (3.0696) grad_norm 5.6496 (6.8319) loss_scale 32768.0000 (32768.0000) mem 50285MB
|
641 |
+
[2024-02-22 18:03:56 vssm_small] (main.py 401): INFO Full config saved to ./res_vmamba_cnf241_result_best/vssm_small/default/config.json
|
642 |
+
[2024-02-22 18:03:56 vssm_small] (main.py 404): INFO AMP_ENABLE: true
|
643 |
+
AMP_OPT_LEVEL: ''
|
644 |
+
AUG:
|
645 |
+
AUTO_AUGMENT: rand-m9-mstd0.5-inc1
|
646 |
+
COLOR_JITTER: 0.4
|
647 |
+
CUTMIX: 1.0
|
648 |
+
CUTMIX_MINMAX: null
|
649 |
+
MIXUP: 0.8
|
650 |
+
MIXUP_MODE: batch
|
651 |
+
MIXUP_PROB: 1.0
|
652 |
+
MIXUP_SWITCH_PROB: 0.5
|
653 |
+
RECOUNT: 1
|
654 |
+
REMODE: pixel
|
655 |
+
REPROB: 0.25
|
656 |
+
BASE:
|
657 |
+
- ''
|
658 |
+
DATA:
|
659 |
+
BATCH_SIZE: 128
|
660 |
+
CACHE_MODE: part
|
661 |
+
DATASET: imagenet
|
662 |
+
DATA_PATH: /home/public_3T/food_data/CNFOOD-241
|
663 |
+
IMG_SIZE: 224
|
664 |
+
INTERPOLATION: bicubic
|
665 |
+
MASK_PATCH_SIZE: 32
|
666 |
+
MASK_RATIO: 0.6
|
667 |
+
NUM_WORKERS: 8
|
668 |
+
PIN_MEMORY: true
|
669 |
+
ZIP_MODE: false
|
670 |
+
ENABLE_AMP: false
|
671 |
+
EVAL_MODE: false
|
672 |
+
FUSED_LAYERNORM: false
|
673 |
+
FUSED_WINDOW_PROCESS: false
|
674 |
+
LOCAL_RANK: 0
|
675 |
+
MODEL:
|
676 |
+
DROP_PATH_RATE: 0.3
|
677 |
+
DROP_RATE: 0.0
|
678 |
+
LABEL_SMOOTHING: 0.1
|
679 |
+
MMCKPT: false
|
680 |
+
NAME: vssm_small
|
681 |
+
NUM_CLASSES: 241
|
682 |
+
PRETRAINED: ./res_vmamba_cnf241_result_2/vssm_small/default/ckpt_epoch_12.pth
|
683 |
+
RESUME: ''
|
684 |
+
TYPE: vssm
|
685 |
+
VSSM:
|
686 |
+
DEPTHS:
|
687 |
+
- 2
|
688 |
+
- 2
|
689 |
+
- 27
|
690 |
+
- 2
|
691 |
+
DOWNSAMPLE: v1
|
692 |
+
DT_RANK: auto
|
693 |
+
D_STATE: 16
|
694 |
+
EMBED_DIM: 96
|
695 |
+
IN_CHANS: 3
|
696 |
+
MLP_RATIO: 0.0
|
697 |
+
PATCH_NORM: true
|
698 |
+
PATCH_SIZE: 4
|
699 |
+
SHARED_SSM: false
|
700 |
+
SOFTMAX: false
|
701 |
+
SSM_RATIO: 2.0
|
702 |
+
OUTPUT: ./res_vmamba_cnf241_result_best/vssm_small/default
|
703 |
+
PRINT_FREQ: 10
|
704 |
+
SAVE_FREQ: 1
|
705 |
+
SEED: 0
|
706 |
+
TAG: default
|
707 |
+
TEST:
|
708 |
+
CROP: true
|
709 |
+
SEQUENTIAL: false
|
710 |
+
SHUFFLE: false
|
711 |
+
THROUGHPUT_MODE: false
|
712 |
+
TRAIN:
|
713 |
+
ACCUMULATION_STEPS: 1
|
714 |
+
AUTO_RESUME: true
|
715 |
+
BASE_LR: 0.000125
|
716 |
+
CLIP_GRAD: 5.0
|
717 |
+
EPOCHS: 300
|
718 |
+
LAYER_DECAY: 1.0
|
719 |
+
LR_SCHEDULER:
|
720 |
+
DECAY_EPOCHS: 30
|
721 |
+
DECAY_RATE: 0.1
|
722 |
+
GAMMA: 0.1
|
723 |
+
MULTISTEPS: []
|
724 |
+
NAME: cosine
|
725 |
+
WARMUP_PREFIX: true
|
726 |
+
MIN_LR: 1.25e-06
|
727 |
+
MOE:
|
728 |
+
SAVE_MASTER: false
|
729 |
+
OPTIMIZER:
|
730 |
+
BETAS:
|
731 |
+
- 0.9
|
732 |
+
- 0.999
|
733 |
+
EPS: 1.0e-08
|
734 |
+
MOMENTUM: 0.9
|
735 |
+
NAME: adamw
|
736 |
+
START_EPOCH: 0
|
737 |
+
USE_CHECKPOINT: false
|
738 |
+
WARMUP_EPOCHS: 20
|
739 |
+
WARMUP_LR: 1.25e-07
|
740 |
+
WEIGHT_DECAY: 0.05
|
741 |
+
|
742 |
+
[2024-02-22 18:03:56 vssm_small] (main.py 405): INFO {"cfg": "configs/vssm/vssm_small_224.yaml", "opts": null, "batch_size": 128, "data_path": "/home/public_3T/food_data/CNFOOD-241", "zip": false, "cache_mode": "part", "pretrained": "./res_vmamba_cnf241_result_2/vssm_small/default/ckpt_epoch_12.pth", "resume": null, "accumulation_steps": null, "use_checkpoint": false, "disable_amp": false, "amp_opt_level": null, "output": "./res_vmamba_cnf241_result_best", "tag": null, "eval": false, "throughput": false, "local_rank": 0, "fused_layernorm": false, "optim": null, "model_ema": true, "model_ema_decay": 0.9999, "model_ema_force_cpu": false}
|
743 |
+
[2024-02-22 18:03:56 vssm_small] (main.py 112): INFO Creating model:vssm/vssm_small
|
744 |
+
[2024-02-22 18:03:57 vssm_small] (main.py 118): INFO VSSM(
|
745 |
+
(patch_embed): Sequential(
|
746 |
+
(0): Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4))
|
747 |
+
(1): Permute()
|
748 |
+
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
749 |
+
)
|
750 |
+
(layers): ModuleList(
|
751 |
+
(0): Sequential(
|
752 |
+
(blocks): Sequential(
|
753 |
+
(0): VSSBlock(
|
754 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
755 |
+
(op): SS2D(
|
756 |
+
(out_norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
757 |
+
(in_proj): Linear(in_features=96, out_features=384, bias=False)
|
758 |
+
(act): SiLU()
|
759 |
+
(conv2d): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
|
760 |
+
(out_proj): Linear(in_features=192, out_features=96, bias=False)
|
761 |
+
(dropout): Identity()
|
762 |
+
)
|
763 |
+
(drop_path): timm.DropPath(0.0)
|
764 |
+
)
|
765 |
+
(1): VSSBlock(
|
766 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
767 |
+
(op): SS2D(
|
768 |
+
(out_norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
769 |
+
(in_proj): Linear(in_features=96, out_features=384, bias=False)
|
770 |
+
(act): SiLU()
|
771 |
+
(conv2d): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
|
772 |
+
(out_proj): Linear(in_features=192, out_features=96, bias=False)
|
773 |
+
(dropout): Identity()
|
774 |
+
)
|
775 |
+
(drop_path): timm.DropPath(0.00937500037252903)
|
776 |
+
)
|
777 |
+
)
|
778 |
+
(downsample): PatchMerging2D(
|
779 |
+
(reduction): Linear(in_features=384, out_features=192, bias=False)
|
780 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
781 |
+
)
|
782 |
+
)
|
783 |
+
(1): Sequential(
|
784 |
+
(blocks): Sequential(
|
785 |
+
(0): VSSBlock(
|
786 |
+
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
787 |
+
(op): SS2D(
|
788 |
+
(out_norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
789 |
+
(in_proj): Linear(in_features=192, out_features=768, bias=False)
|
790 |
+
(act): SiLU()
|
791 |
+
(conv2d): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
|
792 |
+
(out_proj): Linear(in_features=384, out_features=192, bias=False)
|
793 |
+
(dropout): Identity()
|
794 |
+
)
|
795 |
+
(drop_path): timm.DropPath(0.01875000074505806)
|
796 |
+
)
|
797 |
+
(1): VSSBlock(
|
798 |
+
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
799 |
+
(op): SS2D(
|
800 |
+
(out_norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
801 |
+
(in_proj): Linear(in_features=192, out_features=768, bias=False)
|
802 |
+
(act): SiLU()
|
803 |
+
(conv2d): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
|
804 |
+
(out_proj): Linear(in_features=384, out_features=192, bias=False)
|
805 |
+
(dropout): Identity()
|
806 |
+
)
|
807 |
+
(drop_path): timm.DropPath(0.02812500111758709)
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(downsample): PatchMerging2D(
|
811 |
+
(reduction): Linear(in_features=768, out_features=384, bias=False)
|
812 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
813 |
+
)
|
814 |
+
)
|
815 |
+
(2): Sequential(
|
816 |
+
(blocks): Sequential(
|
817 |
+
(0): VSSBlock(
|
818 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
819 |
+
(op): SS2D(
|
820 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
821 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
822 |
+
(act): SiLU()
|
823 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
824 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
825 |
+
(dropout): Identity()
|
826 |
+
)
|
827 |
+
(drop_path): timm.DropPath(0.03750000149011612)
|
828 |
+
)
|
829 |
+
(1): VSSBlock(
|
830 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
831 |
+
(op): SS2D(
|
832 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
833 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
834 |
+
(act): SiLU()
|
835 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
836 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
837 |
+
(dropout): Identity()
|
838 |
+
)
|
839 |
+
(drop_path): timm.DropPath(0.046875)
|
840 |
+
)
|
841 |
+
(2): VSSBlock(
|
842 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
843 |
+
(op): SS2D(
|
844 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
845 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
846 |
+
(act): SiLU()
|
847 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
848 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
849 |
+
(dropout): Identity()
|
850 |
+
)
|
851 |
+
(drop_path): timm.DropPath(0.05625000223517418)
|
852 |
+
)
|
853 |
+
(3): VSSBlock(
|
854 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
855 |
+
(op): SS2D(
|
856 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
857 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
858 |
+
(act): SiLU()
|
859 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
860 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
861 |
+
(dropout): Identity()
|
862 |
+
)
|
863 |
+
(drop_path): timm.DropPath(0.06562500447034836)
|
864 |
+
)
|
865 |
+
(4): VSSBlock(
|
866 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
867 |
+
(op): SS2D(
|
868 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
869 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
870 |
+
(act): SiLU()
|
871 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
872 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
873 |
+
(dropout): Identity()
|
874 |
+
)
|
875 |
+
(drop_path): timm.DropPath(0.07500000298023224)
|
876 |
+
)
|
877 |
+
(5): VSSBlock(
|
878 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
879 |
+
(op): SS2D(
|
880 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
881 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
882 |
+
(act): SiLU()
|
883 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
884 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
885 |
+
(dropout): Identity()
|
886 |
+
)
|
887 |
+
(drop_path): timm.DropPath(0.08437500149011612)
|
888 |
+
)
|
889 |
+
(6): VSSBlock(
|
890 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
891 |
+
(op): SS2D(
|
892 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
893 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
894 |
+
(act): SiLU()
|
895 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
896 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
897 |
+
(dropout): Identity()
|
898 |
+
)
|
899 |
+
(drop_path): timm.DropPath(0.09375)
|
900 |
+
)
|
901 |
+
(7): VSSBlock(
|
902 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
903 |
+
(op): SS2D(
|
904 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
905 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
906 |
+
(act): SiLU()
|
907 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
908 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
909 |
+
(dropout): Identity()
|
910 |
+
)
|
911 |
+
(drop_path): timm.DropPath(0.10312500596046448)
|
912 |
+
)
|
913 |
+
(8): VSSBlock(
|
914 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
915 |
+
(op): SS2D(
|
916 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
917 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
918 |
+
(act): SiLU()
|
919 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
920 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
921 |
+
(dropout): Identity()
|
922 |
+
)
|
923 |
+
(drop_path): timm.DropPath(0.11250000447034836)
|
924 |
+
)
|
925 |
+
(9): VSSBlock(
|
926 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
927 |
+
(op): SS2D(
|
928 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
929 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
930 |
+
(act): SiLU()
|
931 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
932 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
933 |
+
(dropout): Identity()
|
934 |
+
)
|
935 |
+
(drop_path): timm.DropPath(0.12187500298023224)
|
936 |
+
)
|
937 |
+
(10): VSSBlock(
|
938 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
939 |
+
(op): SS2D(
|
940 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
941 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
942 |
+
(act): SiLU()
|
943 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
944 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
945 |
+
(dropout): Identity()
|
946 |
+
)
|
947 |
+
(drop_path): timm.DropPath(0.13125000894069672)
|
948 |
+
)
|
949 |
+
(11): VSSBlock(
|
950 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
951 |
+
(op): SS2D(
|
952 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
953 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
954 |
+
(act): SiLU()
|
955 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
956 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
957 |
+
(dropout): Identity()
|
958 |
+
)
|
959 |
+
(drop_path): timm.DropPath(0.140625)
|
960 |
+
)
|
961 |
+
(12): VSSBlock(
|
962 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
963 |
+
(op): SS2D(
|
964 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
965 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
966 |
+
(act): SiLU()
|
967 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
968 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
969 |
+
(dropout): Identity()
|
970 |
+
)
|
971 |
+
(drop_path): timm.DropPath(0.15000000596046448)
|
972 |
+
)
|
973 |
+
(13): VSSBlock(
|
974 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
975 |
+
(op): SS2D(
|
976 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
977 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
978 |
+
(act): SiLU()
|
979 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
980 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
981 |
+
(dropout): Identity()
|
982 |
+
)
|
983 |
+
(drop_path): timm.DropPath(0.15937501192092896)
|
984 |
+
)
|
985 |
+
(14): VSSBlock(
|
986 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
987 |
+
(op): SS2D(
|
988 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
989 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
990 |
+
(act): SiLU()
|
991 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
992 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
993 |
+
(dropout): Identity()
|
994 |
+
)
|
995 |
+
(drop_path): timm.DropPath(0.16875000298023224)
|
996 |
+
)
|
997 |
+
(15): VSSBlock(
|
998 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
999 |
+
(op): SS2D(
|
1000 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1001 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1002 |
+
(act): SiLU()
|
1003 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1004 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1005 |
+
(dropout): Identity()
|
1006 |
+
)
|
1007 |
+
(drop_path): timm.DropPath(0.17812500894069672)
|
1008 |
+
)
|
1009 |
+
(16): VSSBlock(
|
1010 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1011 |
+
(op): SS2D(
|
1012 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1013 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1014 |
+
(act): SiLU()
|
1015 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1016 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1017 |
+
(dropout): Identity()
|
1018 |
+
)
|
1019 |
+
(drop_path): timm.DropPath(0.1875)
|
1020 |
+
)
|
1021 |
+
(17): VSSBlock(
|
1022 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1023 |
+
(op): SS2D(
|
1024 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1025 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1026 |
+
(act): SiLU()
|
1027 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1028 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1029 |
+
(dropout): Identity()
|
1030 |
+
)
|
1031 |
+
(drop_path): timm.DropPath(0.19687500596046448)
|
1032 |
+
)
|
1033 |
+
(18): VSSBlock(
|
1034 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1035 |
+
(op): SS2D(
|
1036 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1037 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1038 |
+
(act): SiLU()
|
1039 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1040 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1041 |
+
(dropout): Identity()
|
1042 |
+
)
|
1043 |
+
(drop_path): timm.DropPath(0.20625001192092896)
|
1044 |
+
)
|
1045 |
+
(19): VSSBlock(
|
1046 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1047 |
+
(op): SS2D(
|
1048 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1049 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1050 |
+
(act): SiLU()
|
1051 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1052 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1053 |
+
(dropout): Identity()
|
1054 |
+
)
|
1055 |
+
(drop_path): timm.DropPath(0.21562501788139343)
|
1056 |
+
)
|
1057 |
+
(20): VSSBlock(
|
1058 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1059 |
+
(op): SS2D(
|
1060 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1061 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1062 |
+
(act): SiLU()
|
1063 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1064 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1065 |
+
(dropout): Identity()
|
1066 |
+
)
|
1067 |
+
(drop_path): timm.DropPath(0.22500000894069672)
|
1068 |
+
)
|
1069 |
+
(21): VSSBlock(
|
1070 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1071 |
+
(op): SS2D(
|
1072 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1073 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1074 |
+
(act): SiLU()
|
1075 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1076 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1077 |
+
(dropout): Identity()
|
1078 |
+
)
|
1079 |
+
(drop_path): timm.DropPath(0.2343750149011612)
|
1080 |
+
)
|
1081 |
+
(22): VSSBlock(
|
1082 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1083 |
+
(op): SS2D(
|
1084 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1085 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1086 |
+
(act): SiLU()
|
1087 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1088 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1089 |
+
(dropout): Identity()
|
1090 |
+
)
|
1091 |
+
(drop_path): timm.DropPath(0.24375000596046448)
|
1092 |
+
)
|
1093 |
+
(23): VSSBlock(
|
1094 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1095 |
+
(op): SS2D(
|
1096 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1097 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1098 |
+
(act): SiLU()
|
1099 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1100 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1101 |
+
(dropout): Identity()
|
1102 |
+
)
|
1103 |
+
(drop_path): timm.DropPath(0.25312501192092896)
|
1104 |
+
)
|
1105 |
+
(24): VSSBlock(
|
1106 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1107 |
+
(op): SS2D(
|
1108 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1109 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1110 |
+
(act): SiLU()
|
1111 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1112 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1113 |
+
(dropout): Identity()
|
1114 |
+
)
|
1115 |
+
(drop_path): timm.DropPath(0.26250001788139343)
|
1116 |
+
)
|
1117 |
+
(25): VSSBlock(
|
1118 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1119 |
+
(op): SS2D(
|
1120 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1121 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1122 |
+
(act): SiLU()
|
1123 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1124 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1125 |
+
(dropout): Identity()
|
1126 |
+
)
|
1127 |
+
(drop_path): timm.DropPath(0.2718750238418579)
|
1128 |
+
)
|
1129 |
+
(26): VSSBlock(
|
1130 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
1131 |
+
(op): SS2D(
|
1132 |
+
(out_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1133 |
+
(in_proj): Linear(in_features=384, out_features=1536, bias=False)
|
1134 |
+
(act): SiLU()
|
1135 |
+
(conv2d): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768)
|
1136 |
+
(out_proj): Linear(in_features=768, out_features=384, bias=False)
|
1137 |
+
(dropout): Identity()
|
1138 |
+
)
|
1139 |
+
(drop_path): timm.DropPath(0.28125)
|
1140 |
+
)
|
1141 |
+
)
|
1142 |
+
(downsample): PatchMerging2D(
|
1143 |
+
(reduction): Linear(in_features=1536, out_features=768, bias=False)
|
1144 |
+
(norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
1145 |
+
)
|
1146 |
+
)
|
1147 |
+
(3): Sequential(
|
1148 |
+
(blocks): Sequential(
|
1149 |
+
(0): VSSBlock(
|
1150 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1151 |
+
(op): SS2D(
|
1152 |
+
(out_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
1153 |
+
(in_proj): Linear(in_features=768, out_features=3072, bias=False)
|
1154 |
+
(act): SiLU()
|
1155 |
+
(conv2d): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536)
|
1156 |
+
(out_proj): Linear(in_features=1536, out_features=768, bias=False)
|
1157 |
+
(dropout): Identity()
|
1158 |
+
)
|
1159 |
+
(drop_path): timm.DropPath(0.2906250059604645)
|
1160 |
+
)
|
1161 |
+
(1): VSSBlock(
|
1162 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1163 |
+
(op): SS2D(
|
1164 |
+
(out_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
1165 |
+
(in_proj): Linear(in_features=768, out_features=3072, bias=False)
|
1166 |
+
(act): SiLU()
|
1167 |
+
(conv2d): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536)
|
1168 |
+
(out_proj): Linear(in_features=1536, out_features=768, bias=False)
|
1169 |
+
(dropout): Identity()
|
1170 |
+
)
|
1171 |
+
(drop_path): timm.DropPath(0.30000001192092896)
|
1172 |
+
)
|
1173 |
+
)
|
1174 |
+
(downsample): Identity()
|
1175 |
+
)
|
1176 |
+
)
|
1177 |
+
(classifier): Sequential(
|
1178 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
1179 |
+
(permute): Permute()
|
1180 |
+
(avgpool): AdaptiveAvgPool2d(output_size=1)
|
1181 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
1182 |
+
(head): Linear(in_features=768, out_features=1000, bias=True)
|
1183 |
+
)
|
1184 |
+
)
|
1185 |
+
[2024-02-22 18:03:57 vssm_small] (main.py 120): INFO number of params: 44417416
|
1186 |
+
[2024-02-22 18:03:58 vssm_small] (main.py 123): INFO number of GFLOPs: 11.231522784
|
1187 |
+
[2024-02-22 18:03:58 vssm_small] (main.py 167): INFO auto resuming from ./res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth
|
1188 |
+
[2024-02-22 18:03:58 vssm_small] (utils.py 18): INFO ==============> Resuming form ./res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth....................
|
1189 |
+
[2024-02-22 18:04:00 vssm_small] (utils.py 27): INFO resuming model: <All keys matched successfully>
|
1190 |
+
[2024-02-22 18:04:00 vssm_small] (utils.py 34): INFO resuming model_ema: <All keys matched successfully>
|
1191 |
+
[2024-02-22 18:04:00 vssm_small] (utils.py 48): INFO => loaded successfully './res_vmamba_cnf241_result_best/vssm_small/default/ckpt_epoch_166.pth' (epoch 166)
|
1192 |
+
[2024-02-22 18:04:11 vssm_small] (main.py 324): INFO Test: [0/164] Time 10.625 (10.625) Loss 0.3557 (0.3557) Acc@1 92.188 (92.188) Acc@5 99.219 (99.219) Mem 7155MB
|
1193 |
+
[2024-02-22 18:04:16 vssm_small] (main.py 324): INFO Test: [10/164] Time 0.483 (1.405) Loss 0.9014 (0.9043) Acc@1 75.000 (78.622) Acc@5 96.094 (95.099) Mem 7155MB
|
1194 |
+
[2024-02-22 18:04:21 vssm_small] (main.py 324): INFO Test: [20/164] Time 0.483 (0.966) Loss 1.3975 (1.0178) Acc@1 73.438 (75.818) Acc@5 89.844 (95.238) Mem 7155MB
|
1195 |
+
[2024-02-22 18:04:25 vssm_small] (main.py 324): INFO Test: [30/164] Time 0.483 (0.810) Loss 0.5830 (0.9851) Acc@1 86.719 (77.344) Acc@5 96.875 (94.960) Mem 7155MB
|
1196 |
+
[2024-02-22 18:04:30 vssm_small] (main.py 324): INFO Test: [40/164] Time 0.483 (0.730) Loss 0.9902 (0.9247) Acc@1 77.344 (78.925) Acc@5 95.312 (95.332) Mem 7155MB
|
1197 |
+
[2024-02-22 18:04:35 vssm_small] (main.py 324): INFO Test: [50/164] Time 0.483 (0.682) Loss 1.3584 (0.9845) Acc@1 69.531 (77.681) Acc@5 92.969 (94.838) Mem 7155MB
|
1198 |
+
[2024-02-22 18:04:40 vssm_small] (main.py 324): INFO Test: [60/164] Time 0.483 (0.649) Loss 1.1582 (1.0527) Acc@1 70.312 (75.999) Acc@5 96.875 (94.237) Mem 7155MB
|
1199 |
+
[2024-02-22 18:04:45 vssm_small] (main.py 324): INFO Test: [70/164] Time 0.483 (0.626) Loss 0.4968 (1.0371) Acc@1 89.844 (76.320) Acc@5 96.875 (94.311) Mem 7155MB
|
1200 |
+
[2024-02-22 18:04:50 vssm_small] (main.py 324): INFO Test: [80/164] Time 0.483 (0.608) Loss 0.4280 (1.0560) Acc@1 91.406 (75.965) Acc@5 98.438 (94.088) Mem 7155MB
|
1201 |
+
[2024-02-22 18:04:54 vssm_small] (main.py 324): INFO Test: [90/164] Time 0.483 (0.594) Loss 1.0479 (1.0186) Acc@1 71.875 (76.829) Acc@5 99.219 (94.420) Mem 7155MB
|
1202 |
+
[2024-02-22 18:04:59 vssm_small] (main.py 324): INFO Test: [100/164] Time 0.483 (0.583) Loss 0.5444 (1.0171) Acc@1 82.812 (77.158) Acc@5 100.000 (94.307) Mem 7155MB
|
1203 |
+
[2024-02-22 18:05:04 vssm_small] (main.py 324): INFO Test: [110/164] Time 0.483 (0.574) Loss 1.3740 (1.0362) Acc@1 67.188 (76.464) Acc@5 96.875 (94.348) Mem 7155MB
|
1204 |
+
[2024-02-22 18:05:09 vssm_small] (main.py 324): INFO Test: [120/164] Time 0.483 (0.567) Loss 2.1602 (1.0386) Acc@1 33.594 (76.220) Acc@5 89.844 (94.441) Mem 7155MB
|
1205 |
+
[2024-02-22 18:05:14 vssm_small] (main.py 324): INFO Test: [130/164] Time 0.483 (0.560) Loss 1.2930 (1.0532) Acc@1 57.812 (75.889) Acc@5 98.438 (94.281) Mem 7155MB
|
1206 |
+
[2024-02-22 18:05:19 vssm_small] (main.py 324): INFO Test: [140/164] Time 0.483 (0.555) Loss 0.7490 (1.0376) Acc@1 81.250 (76.141) Acc@5 96.094 (94.437) Mem 7155MB
|
1207 |
+
[2024-02-22 18:05:23 vssm_small] (main.py 324): INFO Test: [150/164] Time 0.482 (0.550) Loss 1.1650 (1.0309) Acc@1 69.531 (76.293) Acc@5 98.438 (94.521) Mem 7155MB
|
1208 |
+
[2024-02-22 18:05:28 vssm_small] (main.py 324): INFO Test: [160/164] Time 0.483 (0.546) Loss 0.5903 (1.0296) Acc@1 89.844 (76.305) Acc@5 95.312 (94.580) Mem 7155MB
|
1209 |
+
[2024-02-22 18:05:31 vssm_small] (main.py 331): INFO * Acc@1 76.541 Acc@5 94.638
|
1210 |
+
[2024-02-22 18:05:31 vssm_small] (main.py 174): INFO Accuracy of the network on the 20943 test images: 76.5%
|
1211 |
+
[2024-02-22 18:05:39 vssm_small] (main.py 324): INFO Test: [0/164] Time 8.835 (8.835) Loss 0.4526 (0.4526) Acc@1 89.844 (89.844) Acc@5 99.219 (99.219) Mem 7155MB
|
1212 |
+
[2024-02-22 18:05:44 vssm_small] (main.py 324): INFO Test: [10/164] Time 0.482 (1.242) Loss 1.1172 (0.8497) Acc@1 67.969 (79.830) Acc@5 96.094 (95.739) Mem 7155MB
|
1213 |
+
[2024-02-22 18:05:49 vssm_small] (main.py 324): INFO Test: [20/164] Time 0.483 (0.880) Loss 1.3506 (0.9275) Acc@1 72.656 (77.567) Acc@5 92.188 (96.168) Mem 7155MB
|
1214 |
+
[2024-02-22 18:05:54 vssm_small] (main.py 324): INFO Test: [30/164] Time 0.483 (0.752) Loss 0.6631 (0.9005) Acc@1 84.375 (79.133) Acc@5 96.875 (95.640) Mem 7155MB
|
1215 |
+
[2024-02-22 18:05:59 vssm_small] (main.py 324): INFO Test: [40/164] Time 0.483 (0.686) Loss 0.8730 (0.8447) Acc@1 78.906 (80.640) Acc@5 96.094 (95.941) Mem 7155MB
|
1216 |
+
[2024-02-22 18:06:03 vssm_small] (main.py 324): INFO Test: [50/164] Time 0.483 (0.646) Loss 1.4102 (0.9097) Acc@1 66.406 (79.350) Acc@5 92.969 (95.343) Mem 7155MB
|
1217 |
+
[2024-02-22 18:06:08 vssm_small] (main.py 324): INFO Test: [60/164] Time 0.482 (0.620) Loss 1.1191 (0.9768) Acc@1 67.969 (77.818) Acc@5 96.875 (94.762) Mem 7155MB
|
1218 |
+
[2024-02-22 18:06:13 vssm_small] (main.py 324): INFO Test: [70/164] Time 0.482 (0.600) Loss 0.4170 (0.9548) Acc@1 90.625 (78.191) Acc@5 96.094 (94.971) Mem 7155MB
|
1219 |
+
[2024-02-22 18:06:18 vssm_small] (main.py 324): INFO Test: [80/164] Time 0.482 (0.586) Loss 0.4082 (0.9766) Acc@1 91.406 (77.778) Acc@5 98.438 (94.676) Mem 7155MB
|
1220 |
+
[2024-02-22 18:06:23 vssm_small] (main.py 324): INFO Test: [90/164] Time 0.482 (0.574) Loss 1.0576 (0.9459) Acc@1 72.656 (78.546) Acc@5 99.219 (94.943) Mem 7155MB
|
1221 |
+
[2024-02-22 18:06:28 vssm_small] (main.py 324): INFO Test: [100/164] Time 0.483 (0.565) Loss 0.5508 (0.9468) Acc@1 84.375 (78.860) Acc@5 100.000 (94.825) Mem 7155MB
|
1222 |
+
[2024-02-22 18:06:32 vssm_small] (main.py 324): INFO Test: [110/164] Time 0.483 (0.558) Loss 1.1367 (0.9615) Acc@1 68.750 (78.202) Acc@5 97.656 (94.869) Mem 7155MB
|
1223 |
+
[2024-02-22 18:06:37 vssm_small] (main.py 324): INFO Test: [120/164] Time 0.482 (0.552) Loss 2.1855 (0.9641) Acc@1 29.688 (77.893) Acc@5 91.406 (94.990) Mem 7155MB
|
1224 |
+
[2024-02-22 18:06:42 vssm_small] (main.py 324): INFO Test: [130/164] Time 0.483 (0.546) Loss 1.2090 (0.9734) Acc@1 60.156 (77.642) Acc@5 99.219 (94.931) Mem 7155MB
|
1225 |
+
[2024-02-22 18:06:47 vssm_small] (main.py 324): INFO Test: [140/164] Time 0.483 (0.542) Loss 0.6606 (0.9576) Acc@1 82.812 (77.876) Acc@5 99.219 (95.107) Mem 7155MB
|
1226 |
+
[2024-02-22 18:06:52 vssm_small] (main.py 324): INFO Test: [150/164] Time 0.482 (0.538) Loss 0.9053 (0.9501) Acc@1 77.344 (78.084) Acc@5 98.438 (95.183) Mem 7155MB
|
1227 |
+
[2024-02-22 18:06:57 vssm_small] (main.py 324): INFO Test: [160/164] Time 0.482 (0.534) Loss 0.5884 (0.9481) Acc@1 86.719 (78.023) Acc@5 96.875 (95.259) Mem 7155MB
|
1228 |
+
[2024-02-22 18:06:58 vssm_small] (main.py 331): INFO * Acc@1 78.260 Acc@5 95.306
|
1229 |
+
[2024-02-22 18:06:58 vssm_small] (main.py 177): INFO Accuracy of the network ema on the 20943 test images: 78.3%
|
1230 |
+
[2024-02-22 18:06:58 vssm_small] (main.py 196): INFO Start training
|
1231 |
+
[2024-02-22 18:07:10 vssm_small] (main.py 274): INFO Train: [167/300][0/933] eta 3:02:27 lr 0.000058 wd 0.0500 time 11.7339 (11.7339) data time 8.6883 (8.6883) loss 3.2837 (3.2837) grad_norm 7.2753 (7.2753) loss_scale 32768.0000 (32768.0000) mem 50097MB
|
1232 |
+
[2024-02-22 18:07:26 vssm_small] (main.py 274): INFO Train: [167/300][10/933] eta 0:38:21 lr 0.000058 wd 0.0500 time 1.5683 (2.4935) data time 0.0006 (0.7903) loss 2.0028 (3.0696) grad_norm 5.6539 (6.8326) loss_scale 32768.0000 (32768.0000) mem 50285MB
|
1233 |
+
[2024-02-22 18:07:41 vssm_small] (main.py 274): INFO Train: [167/300][20/933] eta 0:31:15 lr 0.000058 wd 0.0500 time 1.5680 (2.0546) data time 0.0006 (0.4143) loss 2.7450 (2.9151) grad_norm 4.8270 (6.2856) loss_scale 32768.0000 (32768.0000) mem 50285MB
|