File size: 2,299 Bytes
f5cfe23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: ABL_trad_2e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ABL_trad_2e
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6197
- Accuracy: 0.7492
- F1: 0.7480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.8297 | 1.0 | 2342 | 0.8006 | 0.6318 | 0.6304 |
| 0.7468 | 2.0 | 4684 | 0.7369 | 0.6706 | 0.6685 |
| 0.6876 | 3.0 | 7026 | 0.6962 | 0.6913 | 0.6901 |
| 0.6548 | 4.0 | 9368 | 0.6739 | 0.7015 | 0.7009 |
| 0.61 | 5.0 | 11710 | 0.6597 | 0.7134 | 0.7111 |
| 0.5775 | 6.0 | 14052 | 0.6422 | 0.7219 | 0.7203 |
| 0.5592 | 7.0 | 16394 | 0.6298 | 0.7279 | 0.7264 |
| 0.5441 | 8.0 | 18736 | 0.6221 | 0.7346 | 0.7339 |
| 0.5191 | 9.0 | 21078 | 0.6182 | 0.7389 | 0.7373 |
| 0.4999 | 10.0 | 23420 | 0.6229 | 0.7442 | 0.7423 |
| 0.4797 | 11.0 | 25762 | 0.6259 | 0.7436 | 0.7426 |
| 0.4584 | 12.0 | 28104 | 0.6197 | 0.7492 | 0.7480 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|